Maximally Asymmetric Multiple-Valued Functions

被引:7
|
作者
Butler, Jon T. [1 ]
Sasao, Tsutomu [2 ]
机构
[1] Naval Postgrad Sch, Dept Elect & Comp Engn, Monterey, CA 93943 USA
[2] Meiji Univ, Dept Comp Sci, Kawasaki, Kanagawa 2148571, Japan
基金
日本学术振兴会;
关键词
Asymmetric functions; maximally asymmetric functions; multiple-valued; symmetric functions; v-symmetry; vv-symmetry; partitions of integers; characterization and count; SEQUENCES;
D O I
10.1109/ISMVL.2019.00040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The asymmetry of a function f (x(1), x(2),., x(n)) is the fewest elements of the range of f that must be changed so that f becomes a symmetric function. The functions with maximal asymmetry for the case of r-valued n-variable functions have been characterized and counted for r = 2 in two previous papers. In this paper, we extend these results to r > 2. We do this for two types of symmetry, functions whose value is unchanged by 1) any permutation of the variable labels and by 2) any permutation of variable labels and variable values. We also derive the maximum possible asymmetry. We show that, as n -> infinity and r is fixed, the maximum asymmetry approaches (r - 1)r(n -1).
引用
收藏
页码:188 / 193
页数:6
相关论文
共 50 条
  • [1] ON MULTIPLE-VALUED RANDOM FUNCTIONS
    LUMLEY, JL
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) : 1198 - &
  • [2] DEFORMATIONS AND MULTIPLE-VALUED FUNCTIONS
    ALMGREN, F
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 44 : 29 - 130
  • [3] PLI logic for multiple-valued functions
    Falkowski, BJ
    Rahardja, S
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2001, 148 (01): : 7 - 14
  • [4] Probabilistic verification of multiple-valued functions
    Dubrova, E
    Sack, H
    30TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2000, : 460 - 466
  • [5] Regular selections for multiple-valued functions
    Camillo De Lellis
    Carlo Romano Grisanti
    Paolo Tilli
    Annali di Matematica Pura ed Applicata, 2004, 183 : 79 - 95
  • [6] Properties of Multiple-Valued Partition Functions
    Butler, Jon T.
    Sasao, Tsutomu
    Nagayama, Shinobu
    2020 IEEE 50TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2020), 2020, : 82 - 87
  • [7] Representation of multiple-valued logic functions
    Stankovíc, R.S., 1600, Morgan and Claypool Publishers (37):
  • [8] Regular selections for multiple-valued functions
    De Lellis, Camillo
    Grisanti, Carlo Romano
    Tilli, Paolo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2004, 183 (01) : 79 - 95
  • [9] Posets of minors of functions in multiple-valued logic
    Lehtonen, Erkko
    Waldhauser, Tamas
    2017 IEEE 47TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2017), 2017, : 43 - 48
  • [10] A conjunctive canonical expansion of multiple-valued functions
    Dubrova, E
    Färm, P
    ISMVL 2002: 32ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2002, : 35 - 38