Pattern recognition of EEG signals during right and left motor imagery - Learning effects of the subjects

被引:4
|
作者
Inoue, Katsuhiro [1 ]
Mori, Daiki [1 ]
Pfurtscheller, Gert [2 ]
Kumanaru, Kousuke [1 ]
机构
[1] Kyushu Inst Technol, Factory Comp Sci & Syst Engn, Dept Syst Innovat & Informat, Iizuka, Fukuoka, Japan
[2] Graz Univ Technol, Inst Biomed Engn, Dept Med Informat, Graz, Austria
关键词
pattern recognition; EEG (electroencephalogram); motor imagery; and BCI (brain computer interface);
D O I
10.1007/978-4-431-30962-8_23
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electroencephalograph (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by e.g., handicap users with amyotrophic lateral sclerosis (ALS). In this study, statistical pattern recognition method based on AR model was introduced to discriminate the EEG signals recorded during right and left motor imagery. And the learning effects of the subjects are investigated.
引用
收藏
页码:251 / +
页数:2
相关论文
共 50 条
  • [21] Effects of motor imagery perspectives on motor learning based on EEG
    Hayashi, Yuko
    Matsumoto, Sayaka
    Sakuma, Haruo
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2016, 38 : S65 - S65
  • [22] Multi-pattern motor imagery recognition based on EEG features
    Wan, Bai-Kun
    Liu, Yan-Gang
    Ming, Dong
    Sun, Chang-Cheng
    Qi, Hong-Zhi
    Zhang, Guang-Ju
    Cheng, Long-Long
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2010, 43 (10): : 895 - 900
  • [23] A novel deep learning approach for classification of EEG motor imagery signals
    Tabar, Yousef Rezaei
    Halici, Ugur
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (01)
  • [24] Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery
    Neuper, C
    Schlögl, A
    Pfurtscheller, G
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1999, 16 (04) : 373 - 382
  • [25] A Novel Ensemble Learning Approach for Classification of EEG Motor Imagery Signals
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1648 - 1653
  • [26] A brief survey on human activity recognition using motor imagery of EEG signals
    Mahalungkar, Seema Pankaj
    Shrivastava, Rahul
    Angadi, Sanjeevkumar
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2024, 43 (04) : 312 - 327
  • [27] A Comparison of Deep Neural Network Algorithms for Recognition of EEG Motor Imagery Signals
    Hernandez, Luis G.
    Antelis, Javier M.
    PATTERN RECOGNITION, 2018, 10880 : 126 - 134
  • [28] Discriminative Learning of Propagation and Spatial Pattern for Motor Imagery EEG Analysis
    Li, Xinyang
    Zhang, Haihong
    Guan, Cuntai
    Ong, Sim Heng
    Ang, Kai Keng
    Pan, Yaozhang
    NEURAL COMPUTATION, 2013, 25 (10) : 2709 - 2733
  • [29] A multi-class pattern recognition method for motor imagery EEG data
    Fang, Yonghui
    Chen, Minyou
    Harrison, Robert F.
    Fang, Yonghui
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 7 - 12
  • [30] Towards Adaptive Classification of Motor Imagery EEG Using Biomimetic Pattern Recognition
    Ge, Yanbin
    Wu, Yan
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 455 - 460