An Automatic Sleep Staging Model Combining Feature Learning and Sequence Learning

被引:0
|
作者
Li, Yinghao [1 ]
Gu, Zhenghui [1 ]
Lin, Zichao [1 ]
Yu, Zhuliang [1 ]
Li, Yuanqing [1 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Sleep stage classification; convolutional neural network; Long Short Term Memory; attention mechanism; muti-label classification;
D O I
10.1109/icaci49185.2020.9177520
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sleep stage classification is a technique for analyzing sleep quality. Manual sleep staging is time-consuming and laborious. In this paper, we propose an automatic sleep stage classification model combining feature learning and sequence learning, which extract features with convolutional neural network(CNN) and learn the sequence transition rule through multi-layer long short term memory(LSTM) architecture with attention mechanism. In addition, we also noticed that most of the misclassified samples locate in transition period. Therefore, multi-label classification scheme is introduced to provide more label information, so as to improve the classification performance of transition period. We evaluate on two public datasets (Sleep EDF Expanded and Physionet2018), where our framework reaches macro F1-score of 79.7 and 79.8, respectively. The proposed network achieves the state-of-the-art classification performance on Sleep EDF Expanded dataset and sets new benchmark on Physionet2018 dataset.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 50 条
  • [31] Deep Learning Enables Accurate Automatic Sleep Staging Based on Ambulatory Forehead EEG
    Leino, Akseli
    Korkalainen, Henri
    Kalevo, Laura
    Nikkonen, Sami
    Kainulainen, Samu
    Ryan, Alexander
    Duce, Brett
    Sipila, Kirsi
    Ahlberg, Jari
    Sahlman, Johanna
    Miettinen, Tomi
    Westeren-Punnonen, Susanna
    Mervaala, Esa
    Toyras, Juha
    Myllymaa, Sami
    Leppanen, Timo
    Myllymaa, Katja
    IEEE ACCESS, 2022, 10 : 26554 - 26566
  • [32] Automatic sleep staging for the young and the old-Evaluating age bias in deep learning
    Baumert, Mathias
    Hartmann, Simon
    Phan, Huy
    SLEEP MEDICINE, 2023, 107 : 18 - 25
  • [33] Automatic sleep staging method of EEG signal based on transfer learning and fusion network
    Wang, Hai
    Guo, Hongbo
    Zhang, Kan
    Gao, Ling
    Zheng, Jie
    NEUROCOMPUTING, 2022, 488 : 183 - 193
  • [34] DEEP LEARNING ENABLES ACCURATE AUTOMATIC SLEEP STAGING BASED ON AMBULATORY FOREHEAD EEG
    Leino, A.
    Korkalainen, H.
    Kalevo, L.
    Nikkonen, S.
    Kainulainen, S.
    Ryan, A.
    Duce, B.
    Sipila, K.
    Ahlberg, J.
    Sahlman, J.
    Miettinen, T.
    Westeren-Punnonen, S.
    Mervaala, E.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Myllymaa, K.
    SLEEP MEDICINE, 2022, 100 : S293 - S294
  • [35] Transfer Learning for Automatic Sleep Staging Using a Pre-Gelled Electrode Grid
    Radke, Fabian A.
    da Silva Souto, Carlos F.
    Paetzold, Wiebke
    Wolf, Karen Insa
    DIAGNOSTICS, 2024, 14 (09)
  • [36] DEEP LEARNING ENABLES AUTOMATIC SLEEP STAGING FROM TEXTILE ELECTRODE-BASED HOME SLEEP RECORDINGS
    Rusanen, M.
    Huttunen, R.
    Korkalainen, H.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Sigurdardottir, S.
    Arnardottir, E. S.
    Kainulainen, S.
    SLEEP MEDICINE, 2022, 100 : S294 - S294
  • [37] MAInt: A multi-task learning model with automatic feature interaction learning for personalized recommendations
    Yin, Pu
    Sun, Yetao
    Gao, Ziyi
    Wang, Rui
    Yao, Yuan
    INFORMATION SCIENCES, 2024, 665
  • [38] Combining Contrastive Learning and Sequence Learning for Automated Essay Scoring
    Wang, XiaoYi
    Liu, Jie
    Zhou, Jianshe
    Jiong, Wang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 3 - 18
  • [39] Sleep Staging Using Plausibility Score: A Novel Feature Selection Method Based on Metric Learning
    Zhang, Tao
    Jiang, Zhonghui
    Li, Dan
    Wei, Xiao
    Guo, Bing
    Huang, Wu
    Xu, Guobiao
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (02) : 577 - 590
  • [40] Automatic Feature Learning for Glaucoma Detection Based on Deep Learning
    Chen, Xiangyu
    Xu, Yanwu
    Yan, Shuicheng
    Wong, Damon Wing Kee
    Wong, Tien Yin
    Liu, Jiang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 669 - 677