On the interface boundary conditions between two interacting incompressible viscous fluid flows

被引:3
|
作者
Brillard, Alain [1 ]
El Jarroudi, Mustapha [2 ]
机构
[1] Univ Haute Alsace, Lab Gest Risques & Environm, F-68093 Mulhouse, France
[2] Univ Abdelmalek Essaadi, FST Tanger, Dept Math, Tanger, Morocco
关键词
Navier-Stokes system; Thin non-Newtonian boundary layers; Gamma-convergence; Interfacial boundary conditions; SEA;
D O I
10.1016/j.jde.2013.04.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two incompressible viscous fluid flows interacting through thin non-Newtonian boundary layers of higher Reynolds' number. We study the asymptotic behaviour of the problem, with respect to the vanishing thickness of the layers, using Gamma-convergence methods. We derive general interfacial boundary conditions between the two fluid flows. These boundary conditions are specified for some particular cases including periodic or fractal structures of layers. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:881 / 904
页数:24
相关论文
共 50 条
  • [21] PROJECTION CONDITIONS ON THE VORTICITY IN VISCOUS INCOMPRESSIBLE FLOWS
    QUARTAPELLE, L
    VALZGRIS, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1981, 1 (02) : 129 - 144
  • [22] Unidirectional Marangoni-Poiseuille Flows of a Viscous Incompressible Fluid with the Navier Boundary Condition
    Burmasheva, N. V.
    Prosviryakov, E. Yu.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019), 2019, 2176
  • [23] A mixed characteristic boundary condition for simulating viscous incompressible fluid flows around a hydrofoil
    Zhang, D. H.
    Shi, Y. X.
    Huang, C.
    Si, Y. L.
    Li, W.
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2019, 24 (01) : 73 - 85
  • [24] Incompressible two-phase flows with an inextensible Newtonian fluid interface
    Reuther, Sebastian
    Voigt, Axel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 : 850 - 858
  • [25] Numerical analysis of incompressible viscous flows interacting with flexible structures
    Wan, D. C.
    NEW TRENDS IN FLUID MECHANICS RESEARCH: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2007, : 324 - 327
  • [26] Initial boundary value problem for the viscous incompressible flows
    Kato, H
    DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 221 - 232
  • [27] Incompressible Viscous Fluid Flows in a Thin Spherical Shell
    Ranis N. Ibragimov
    Dmitry E. Pelinovsky
    Journal of Mathematical Fluid Mechanics, 2009, 11 : 60 - 90
  • [28] Incompressible Viscous Fluid Flows in a Thin Spherical Shell
    Ibragimov, Ranis N.
    Pelinovsky, Dmitry E.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (01) : 60 - 90
  • [29] Numerical models of jet flows of a viscous incompressible fluid
    Chernykh, GG
    Demenkov, AG
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1997, 12 (02) : 111 - 125
  • [30] Flows of a Viscous Incompressible Fluid in a Plane Convergent Channel
    Kumakshev, S. A.
    PHYSICAL AND MATHEMATICAL MODELING OF EARTH AND ENVIRONMENT PROCESSES (2018), 2019, : 253 - 260