The Infinite limit of random permutations avoiding patterns of length three

被引:2
|
作者
Pinsky, Ross G. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
COMBINATORICS PROBABILITY & COMPUTING | 2020年 / 29卷 / 01期
关键词
D O I
10.1017/S0963548319000270
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For tau is an element of S3, let mu(n)(t) denote the uniformly random probability measure on the set of t -avoiding permutations in S-n. Let N* = N boolean OR {infinity} with an appropriate metric and denote by S(N, N*) the compact metric space consisting of functions sigma = {sigma(i)}(i=1)(infinity) from N to N* which are injections when restricted to sigma(-1)(N); that is, if sigma(i) = sigma(j), i not equal j, then sigma(i) = infinity. Extending permutations sigma is an element of S-n by defining sigma(j) = j, for j > n, we have S-n subset of S(N, N*). For each tau is an element of S-3, we study the limiting behaviour of the measures {mu(t)(n)}(n=1)(infinity) on S(N, N*). We obtain partial results for the permutation tau = 321 and complete results for the other five permutations tau is an element of S-3.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
  • [31] Partial permutations avoiding pairs of patterns
    Arbesfeld, Noah
    DISCRETE MATHEMATICS, 2013, 313 (22) : 2614 - 2625
  • [32] Permutations avoiding consecutive patterns, II
    Warlimont, R
    ARCHIV DER MATHEMATIK, 2005, 84 (06) : 496 - 502
  • [33] Symmetric Permutations Avoiding Two Patterns
    David Lonoff
    Jonah Ostroff
    Annals of Combinatorics, 2010, 14 : 143 - 158
  • [34] Permutations avoiding consecutive patterns, II
    Richard Warlimont
    Archiv der Mathematik, 2005, 84 : 496 - 502
  • [35] Permutations containing and avoiding certain patterns
    Mansour, T
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 705 - 708
  • [36] Catalan words avoiding pairs of length three patterns
    Baril, Jean-Luc
    Khalil, Carine
    Vajnovszki, Vincent
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 22 (02):
  • [37] Spatial Random Permutations and Infinite Cycles
    Volker Betz
    Daniel Ueltschi
    Communications in Mathematical Physics, 2009, 285 : 469 - 501
  • [38] Spatial Random Permutations and Infinite Cycles
    Betz, Volker
    Ueltschi, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (02) : 469 - 501
  • [39] Enumerating Permutations Avoiding More Than Three Babson-Steinggrimsson Patterns
    Bernini, Antonio
    Pergola, Elisa
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [40] The shape of random pattern-avoiding permutations
    Miner, Sam
    Pak, Igor
    ADVANCES IN APPLIED MATHEMATICS, 2014, 55 : 86 - 130