Fresnel incoherent correlation holography with single camera shot

被引:44
|
作者
Vijayakumar, Anand [1 ,2 ]
Katkus, Tomas [1 ,2 ]
Lundgaard, Stefan [1 ,2 ]
Linklater, Denver P. [1 ,2 ,3 ]
Ivanova, Elena P. [3 ]
Ng, Soon Hock [1 ,2 ]
Juodkazis, Saulius [1 ,2 ,4 ,5 ]
机构
[1] Swinburne Univ Technol, Sch Sci, Opt Sci Ctr, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, Sch Sci, ARC Training Ctr Surface Engn Adv Mat SEAM, Hawthorn, Vic 3122, Australia
[3] RMIT Univ, Dept Phys, GPO Box 2476, Melbourne, Vic 3001, Australia
[4] Australian Natl Fabricat Facil, Melbourne Ctr Nanofabricat, 151 Wellington Rd, Clayton, Vic 3168, Australia
[5] Tokyo Inst Technol, Sch Mat & Chem Technol, Tokyo Tech World Res Hub Initiat WRHI, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528550, Japan
关键词
imaging; holography; correlation; three-dimensional imaging; diffractive optics; DIGITAL HOLOGRAPHY; RESOLUTION; APERTURE; FINCH; LIMIT; LENS;
D O I
10.29026/oea.2020.200004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fresnel incoherent correlation holography (FINCH) is a self-interference based super-resolution three-dimensional imaging technique. FINCH in inline configuration requires an active phase modulator to record at least three phase-shifted camera shots to reconstruct objects without twin image and bias terms. In this study, FINCH is realized using a randomly multiplexed bifocal binary diffractive Fresnel zone lenses fabricated using electron beam lithography. The object space is calibrated by axially scanning a point object along the optical axis and recording the corresponding point spread holograms (PSHs). An object is mounted within the calibrated object space, and the object hologram was recorded under identical experimental conditions used for recording the PSHs. The image of the object at different depths was reconstructed by a cross-correlation between the object hologram and the PSHs. Application potential including bio-medical optics is discussed.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution
    Katz, Barak
    Wulich, Dov
    Rosen, Joseph
    APPLIED OPTICS, 2010, 49 (30) : 5757 - 5763
  • [42] Comparative study on resolution enhancements in fluorescence-structured illumination Fresnel incoherent correlation holography
    Jeon, Philjun
    Kim, Jongwu
    Lee, Heejung
    Kwon, Hyuk-Sang
    Kim, Dug Young
    OPTICS EXPRESS, 2021, 29 (06) : 9231 - 9241
  • [43] Single-shot incoherent digital holography based on spatial light modulator
    Bai Yun-He
    Zang Rui-Huan
    Wang Pan
    Rong Teng-Da
    Ma Feng-Ying
    Du Yan-Li
    Duan Zhi-Yong
    Gong Qiao-Xia
    ACTA PHYSICA SINICA, 2018, 67 (06)
  • [44] Fresnel incoherent digital holography with large field-of-view
    Tang Ming-Yu
    Wu Meng-Ting
    Zang Rui-Huan
    Rong Teng-Da
    Du Yan-Li
    Ma Feng-Ying
    Duan Zhi-Yong
    Gong Qiao-Xia
    ACTA PHYSICA SINICA, 2019, 68 (10)
  • [45] Single-shot phase-shifting on Michelson interferometry for incoherent digital holography
    Hong, Keehoon
    Choi, Kihong
    ETRI JOURNAL, 2025, 47 (01) : 102 - 111
  • [46] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
    武梦婷
    张雨
    汤明玉
    段智勇
    马凤英
    杜艳丽
    梁二军
    弓巧侠
    Chinese Physics B, 2020, 29 (12) : 277 - 281
  • [47] Optimizing the temporal and spatial resolutions and light throughput of Fresnel incoherent correlation holography in the framework of coded aperture imaging
    Arockiaraj, Francis Gracy
    Xavier, Agnes Pristy Ignatius
    Gopinath, Shivasubramanian
    Rajeswary, Aravind Simon John Francis
    Juodkazis, Saulius
    Anand, Vijayakumar
    JOURNAL OF OPTICS, 2024, 26 (03)
  • [48] Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography
    Wu, Peng
    Zhang, Dejie
    Yuan, Jing
    Zeng, Shaoqun
    Gong, Hui
    Luo, Qingming
    Yang, Xiaoquan
    OPTICS EXPRESS, 2022, 30 (04) : 5177 - 5191
  • [49] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform*
    Wu, Meng-Ting
    Zhang, Yu
    Tang, Ming-Yu
    Duan, Zhi-Yong
    Ma, Feng-Ying
    Du, Yan-Li
    Liang, Er-Jun
    Gong, Qiao-Xia
    CHINESE PHYSICS B, 2020, 29 (12)
  • [50] Fresnel Incoherent Correlation Holography with Lucy-Richardson-Rosen Algorithm and Modified Gerchberg-Saxton Algorithm
    Bleahu, Andrei
    Gopinath, Shivasubramanian
    Arockiaraj, Francis Gracy
    Rajeswary, Aravind Simon John Francis
    Juodkazis, Saulius
    Anand, Vijayakumar
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS VIII, 2023, 12574