Quantifying highly dynamic urban landscapes: Integrating object-based image analysis with Landsat time series data
被引:9
|
作者:
Yu, Wenjuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Yu, Wenjuan
[1
]
Zhou, Weiqi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing Urban Ecosyst Res Stn, Beijing 100085, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Zhou, Weiqi
[1
,2
,3
]
Jing, Chuanbao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Jing, Chuanbao
[1
,2
]
Zhang, Yujia
论文数: 0引用数: 0
h-index: 0
机构:
Arizona States Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85287 USAChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Zhang, Yujia
[4
]
Qian, Yuguo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Qian, Yuguo
[1
]
机构:
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing Urban Ecosyst Res Stn, Beijing 100085, Peoples R China
[4] Arizona States Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85287 USA
Spatial heterogeneity;
Land cover change;
Remote sensing;
Change detection;
Frequency;
Time of change;
COVER CLASSIFICATION;
SPATIAL HETEROGENEITY;
TEMPORAL SEGMENTATION;
FOREST DISTURBANCE;
CITIES;
GREENSPACE;
SCIENCE;
SUSTAINABILITY;
VEGETATION;
EXPANSION;
D O I:
10.1007/s10980-020-01104-7
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
Context Urban landscapes are highly dynamic with changes frequently occurring at short time intervals. Although the Landsat data archive allows the use of high-density time-series data to quantify such dynamics, the approaches that can fully address the spatial and temporal complexity of the urban landscape are still lacking. Objectives A new approach is presented for accurately quantifying urban landscape dynamics. Information regarding when and where a change occurs, what type of change exists, and how often it happens are incorporated. Methods The new approach integrates object-based image analysis and time-series change detection techniques by using all available Landsat images for several decades. This approach was tested on the rapidly urbanizing city of Shenzhen, China from 1986 to 2017. Results Land cover changes in both long- and short-time intervals can be proficiently detected with an overall accuracy of 90.65% and a user's accuracy of 92.18% and 82.40% for "No change" and "Change", respectively. The frequency and time of change can be explicitly displayed while incorporating the advantages of object-based image analysis and time-series change detection. The efficiency of the change analysis can be greatly increased because the object-based analysis greatly reduces the number of analyzed units. Conclusion The new approach can accurately and efficiently detect the land cover change for quantifying urban landscape dynamics. Integrating the object and the remotely sensed time-series data has the potential to link the physical and socio-economic properties together for facilitating sustainable landscape planning.
机构:
Key Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China
Cent South Univ Forestry & Technol, Res Ctr Forest Remote Sensing & Informat Engn, Changsha 410004, Hunan, Peoples R China
Cent South Univ, Ctr Geomat & Reg Sustainable Dev Res, Changsha 410083, Hunan, Peoples R ChinaKey Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China
Zhang, Meng
Lin, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Key Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China
Cent South Univ Forestry & Technol, Res Ctr Forest Remote Sensing & Informat Engn, Changsha 410004, Hunan, Peoples R ChinaKey Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China
机构:
Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R ChinaChinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
机构:
San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USASan Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA
Snavely, Rachel A.
Uyeda, Kellie A.
论文数: 0引用数: 0
h-index: 0
机构:
San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USASan Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA
Uyeda, Kellie A.
Stow, Douglas A.
论文数: 0引用数: 0
h-index: 0
机构:
San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USASan Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA
Stow, Douglas A.
O'Leary, John F.
论文数: 0引用数: 0
h-index: 0
机构:
San Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USASan Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA
O'Leary, John F.
Lambert, Julie
论文数: 0引用数: 0
h-index: 0
机构:
San Diego State Univ, Soil Ecol Res Grp, San Diego, CA 92182 USASan Diego State Univ, Dept Geog, 5500 Campanile Dr, San Diego, CA 92182 USA