Moving Object Detection of dynamic scenes using Spatio-temporal Context and background modeling

被引:0
|
作者
Shen, Chong [1 ]
Yu, Nenghai [1 ]
Li, Weihai [1 ]
Zhou, Wei [2 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230026, Peoples R China
[2] Hefei Acad Publ Secur Technol, CETC Res Inst 38, Hefei, Peoples R China
关键词
Moving object detection; dynamic scenes; background modeling; spatio-temporal context; Markov Random Field;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Within the field of automated video analysis, detection of moving objects remains a challenging task due to the presence of dynamic background and camera motion. Dynamic scenes contain some moving objects such as trees jiggling slightly and water flowing irregularly. In this paper, we present an algorithm to address the problem of dynamic background, which employs spatio-temporal context and background modeling according to Bayes theorem. Spatial context refers to connections of pixels exist almost everywhere while keeping interrupted at boundaries between foreground and background. We use spatial context to eliminate noise points and obtain continuous foreground region. Temporal context interacts with mixture background model, which alleviates spurious detection of dynamic scenes. Object detection is finally carried out by minimizing the energy function of formulation in Markov Random Field. Employing spatio-temporal context helps to sustain high levels of detection accuracy. The efficiency of our algorithm is demonstrated by experiments performed on a variety of challenging video sequences.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Spatio-temporal context for codebook-based dynamic background subtraction
    Wu, Mingjun
    Peng, Xianrong
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2010, 64 (08) : 739 - 747
  • [22] Robust moving object detection based on spatio-temporal confidence relationship
    Fan, Zhihui
    Wang, Hui
    ELECTRONICS LETTERS, 2016, 52 (10) : 825 - 827
  • [23] Spatio-Temporal Analysis for Moving Object Detection Under Complex Environment
    Suheryadi, Adi
    Nugroho, Hertog
    2016 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2016, : 498 - 504
  • [24] Spatio-Temporal Traffic Scene Modeling for Object Motion Detection
    Hao, JiuYue
    Li, Chao
    Kim, Zuwhan
    Xiong, Zhang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) : 295 - 302
  • [25] Adaptive Feature Fusion and Spatio-Temporal Background Modeling in KDE Framework for Object Detection and Shadow Removal
    Sahoo, Subhaluxmi
    Nanda, Pradipta Kumar
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1103 - 1118
  • [26] Spatio-temporal Object Detection Proposals
    Oneata, Dan
    Revaud, Jerome
    Verbeek, Jakob
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2014, PT III, 2014, 8691 : 737 - 752
  • [27] A PERFORMANCE EVALUATION OF FUSION TECHNIQUES FOR SPATIO-TEMPORAL SALIENCY DETECTION IN DYNAMIC SCENES
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3924 - 3928
  • [28] Anomaly detection with a moving camera using spatio-temporal codebooks
    Mateus T. Nakahata
    Lucas A. Thomaz
    Allan F. da Silva
    Eduardo A. B. da Silva
    Sergio L. Netto
    Multidimensional Systems and Signal Processing, 2018, 29 : 1025 - 1054
  • [29] Anomaly detection with a moving camera using spatio-temporal codebooks
    Nakahata, Mateus T.
    Thomaz, Lucas A.
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2018, 29 (03) : 1025 - 1054
  • [30] Object detection using spatio-temporal thresholding in image sequences
    Cho, JH
    Kim, SD
    ELECTRONICS LETTERS, 2004, 40 (18) : 1109 - 1110