Subcategory-Aware Object Detection

被引:4
|
作者
Yu, Xiaoyuan [1 ]
Yang, Jianchao [2 ]
Lin, Zhe [2 ]
Wang, Jiangping [3 ]
Wang, Tianjiang [1 ]
Huang, Thomas [3 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Adobe Syst Inc, Adv Technol Lab, San Jose, CA 95110 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Constrained spectral cluttering; joint subcategories learning; max pooling; object detection; subcategory-aware;
D O I
10.1109/LSP.2014.2299571
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we introduce a subcategory-aware object detection framework to detect generic object classes with high intra-class variace. Motivated by the observation that the object appearance demonstrates some clustering property, we split the training data into subcategories and train a detector for each subcategory. Since the proposed ensemble of detectors relies heavily on subcategory clustering, we propose an effective subcategories generation method that is tuned for the detection task. More specifically, we first initialize subcategories by constrained spectral clustering based on mid-level image features used in object recognition. Then we jointly learn the ensemble detectors and the latent subcategories in an alternative manner. Our performance on the PASCAL VOC 2007 detection challenges and INRIA Person dataset is comparable with state-of-the-art, even with much less computational cost.
引用
收藏
页码:1472 / 1476
页数:5
相关论文
共 50 条
  • [21] BAOD: Budget-Aware Object Detection
    Pardo, Alejandro
    Xu, Mengmeng
    Thabet, Ali
    Arbelaez, Pablo
    Ghanem, Bernard
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1247 - 1256
  • [22] Frequency-aware Camouflaged Object Detection
    Lin, Jiaying
    Tan, Xin
    Xu, Ke
    Ma, Lizhuang
    Lau, Rynsonw. H.
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [23] Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
    Li, Aixuan
    Zhang, Jing
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Tong
    Dai, Yuchao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10066 - 10076
  • [24] Object-Aware Instance Labeling forWeakly Supervised Object Detection
    Kosugi, Satoshi
    Yamasaki, Toshihiko
    Aizawa, Kiyoharu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6063 - 6071
  • [25] Viewpoint-Aware Object Detection and Pose Estimation
    Glasner, Daniel
    Galun, Meirav
    Alpert, Sharon
    Basri, Ronen
    Shakhnarovich, Gregory
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1275 - 1282
  • [26] Object affordance detection with relationship-aware network
    Xue Zhao
    Yang Cao
    Yu Kang
    Neural Computing and Applications, 2020, 32 : 14321 - 14333
  • [27] OAFormer: Occlusion Aware Transformer for Camouflaged Object Detection
    Yang, Xin
    Zhu, Hengliang
    Mao, Guojun
    Xing, Shuli
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1421 - 1426
  • [28] BASNet: Boundary-Aware Salient Object Detection
    Qin, Xuebin
    Zhang, Zichen
    Huang, Chenyang
    Gao, Chao
    Dehghan, Masood
    Jagersand, Martin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7471 - 7481
  • [29] Scale-aware Automatic Augmentation for Object Detection
    Chen, Yukang
    Li, Yanwei
    Kong, Tao
    Qi, Lu
    Chu, Ruihang
    Li, Lei
    Jia, Jiaya
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9558 - 9567
  • [30] Scene Context-Aware Salient Object Detection
    Siris, Avishek
    Jiao, Jianbo
    Tam, Gary K. L.
    Xie, Xianghua
    Lau, Rynson W. H.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4136 - 4146