Exploration the global single-cell ecological landscape of adenomyosis-related cell clusters by single-cell RNA sequencing

被引:5
|
作者
Lin, Jiajing [1 ]
Liu, Li [1 ]
Zheng, Fengque [1 ]
Chen, Saiqiong [1 ]
Yang, Weiwei [1 ]
Li, Jingjing [2 ]
Mo, Steven [3 ]
Zeng, Ding-Yuan [2 ]
机构
[1] Guangxi Med Univ, Dept Obstet & Gynecol, 4th Hosp, Liuzhou, Peoples R China
[2] Liuzhou Matern & Child Healthcare Hosp, Dept Gynecol, Liuzhou, Peoples R China
[3] YuanDong Int Acad Life Sci, Dept Basic Sci, Hong Kong, Peoples R China
关键词
adenomyosis; single-cell RNA sequencing; malignant cells; immune microenvironment; biological function; UTERINE ADENOMYOSIS; EPITHELIAL-CELLS; ENDOMETRIUM; WOMEN; SYMPTOMATOLOGY; PATHOGENESIS; DIAGNOSIS; INSIGHTS; OVARIAN;
D O I
10.3389/fgene.2022.1020757
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Adenomyosis (AM) is a common benign uterine disease that threatens the normal life of patients. Cells associated with microenvironmental immune ecology are crucial in AM, although they are not as well understood at the cellular level. Methods: Single-cell sequencing (scRNA-seq) data were used to construct an AM global single-cell map, to further identify relevant cell clusters and infer chromosomal copy number variation (CNV) in AM samples. The biological functions of cell clusters were explored and cellular evolutionary processes were inferred by enrichment analysis and pseudotime analysis. In addition, a gene regulatory network (GRN) analysis was constructed to explore the regulatory role of transcription factors in AM progression. Results: We obtained the expression profiles of 42260 cells and identified 10 cell clusters. By comparing the differences in cell components between AM patients and controls, we found that significant abundance of endometrial cells (EC), epithelial cells (Ep), endothelial cells (En), and smooth muscle cells (SMC) in AM patients. Cell clusters with high CNV levels possessing tumour-like features existed in the ectopic endometrium samples. Moreover, the Ep clusters were significantly involved in leukocyte transendothelial cell migration and apoptosis, suggesting an association with cell apoptosis and migration. En clusters were mainly involved in pathways in cancer and apoptosis, indicating that En has certain malignant features. Conclusion: This study identified cell clusters with immune-related features, investigated the changes in the immune ecology of the microenvironment of these cells during AM, and provided a new strategy for the treatment of AM.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Single-cell RNA sequencing in orthopedic research
    Wang, Tao
    Wang, Ling
    Zhang, Liping
    Long, Yubin
    Zhang, Yingze
    Hou, Zhiyong
    BONE RESEARCH, 2023, 11 (01)
  • [42] Crafting a blueprint for single-cell RNA sequencing
    Denyer, Tom
    Timmermans, Marja C. P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 92 - 103
  • [43] Single-Cell RNA Sequencing in Hematological Diseases
    Zhu, Yue
    Huang, Yaohui
    Tan, Yun
    Zhao, Weili
    Tian, Qiang
    PROTEOMICS, 2020, 20 (13)
  • [44] Single-cell RNA sequencing at isoform resolution
    Macosko, Evan Z.
    NATURE BIOTECHNOLOGY, 2020, 38 (06) : 697 - 698
  • [45] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [46] Single-cell RNA sequencing in orthopedic research
    Tao Wang
    Ling Wang
    Liping Zhang
    Yubin Long
    Yingze Zhang
    Zhiyong Hou
    Bone Research, 2023, (01) : 89 - 107
  • [47] The Technology and Biology of Single-Cell RNA Sequencing
    Kolodziejczyk, Aleksandra A.
    Kim, Jong Kyoung
    Svensson, Valentine
    Marioni, John C.
    Teichmann, Sarah A.
    MOLECULAR CELL, 2015, 58 (04) : 610 - 620
  • [48] Computational Methods for Single-Cell RNA Sequencing
    Hie, Brian
    Peters, Joshua
    Nyquist, Sarah K.
    Shalek, Alex K.
    Berger, Bonnie
    Bryson, Bryan D.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020, 2020, 3 : 339 - 364
  • [50] Single-cell RNA sequencing to explore immune cell heterogeneity
    Papalexi, Efthymia
    Satija, Rahul
    NATURE REVIEWS IMMUNOLOGY, 2018, 18 (01) : 35 - 45