Locally conformally flat Lorentzian quasi-Einstein manifolds

被引:7
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gavino-Fernandez, S. [2 ]
机构
[1] Univ A Coruna, Dept Math, La Coruna, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 173卷 / 02期
关键词
Quasi-Einstein; Lorentzian metrics; Locally conformally flat manifolds; PRODUCT; SPACES;
D O I
10.1007/s00605-013-0548-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a Robertson-Walker spacetime or a -wave.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [31] Compact quasi-Einstein manifolds with boundary
    Diogenes, Rafael
    Gadelha, Tiago
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (09) : 1690 - 1708
  • [32] ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Shaikh, A. A.
    Jana, Sanjib Kumar
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 9 - 23
  • [33] Characterizations of mixed quasi-Einstein manifolds
    Mallick, Sahanous
    Yildiz, Ahmet
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (06)
  • [34] On the Rigidity of Generalized Quasi-Einstein Manifolds
    M. Ahmad Mirshafeazadeh
    B. Bidabad
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2029 - 2042
  • [35] On the Rigidity of Generalized Quasi-Einstein Manifolds
    Mirshafeazadeh, M. Ahmad
    Bidabad, B.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 2029 - 2042
  • [36] A note on closed quasi-Einstein manifolds
    Costa-Filho, Wagner Oliveira
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [37] Characterizations of Generalized Quasi-Einstein Manifolds
    Sular, Sibel
    Ozgur, Cihan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 407 - 416
  • [38] A note on generalized quasi-Einstein manifolds
    Deng, YiHua
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (10) : 1122 - 1126
  • [39] ON THE EXISTENCE OF GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Chand De, Uday
    Mallick, Sahanous
    ARCHIVUM MATHEMATICUM, 2011, 47 (04): : 279 - 291
  • [40] QUASI-EINSTEIN CONTACT METRIC MANIFOLDS
    Ghosh, Amalendu
    GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (03) : 569 - 577