Locally conformally flat Lorentzian quasi-Einstein manifolds

被引:7
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gavino-Fernandez, S. [2 ]
机构
[1] Univ A Coruna, Dept Math, La Coruna, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2014年 / 173卷 / 02期
关键词
Quasi-Einstein; Lorentzian metrics; Locally conformally flat manifolds; PRODUCT; SPACES;
D O I
10.1007/s00605-013-0548-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a Robertson-Walker spacetime or a -wave.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [1] Locally conformally flat Lorentzian quasi-Einstein manifolds
    M. Brozos-Vázquez
    E. García-Río
    S. Gavino-Fernández
    Monatshefte für Mathematik, 2014, 173 : 175 - 186
  • [2] Locally conformally flat quasi-Einstein manifolds
    Catino, Giovanni
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    Rimoldi, Michele
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 : 181 - 189
  • [3] ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS
    Shaikh, Absos Ali
    Kim, Young Ho
    Hui, Shyamal Kumar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 669 - 689
  • [4] Conformally Flat Quasi-Einstein Spaces
    De, Uday Chand
    Sengupta, Joydeep
    Saha, Diptiman
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 417 - 423
  • [5] On conformally flat special quasi Einstein manifolds
    De, UC
    Ghosh, GC
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 129 - 136
  • [6] Half conformally flat generalized quasi-Einstein manifolds of metric signature (2,2)
    Brozos-Vazquez, Miguel
    Garcia-Rio, Eduardo
    Gilkey, Peter
    Valle-Regueiro, Xabier
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (01)
  • [7] WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS
    Atashpeykar, Parvane
    Zaeim, Amirhesam
    Haji-badali, Ali
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (02) : 183 - 198
  • [8] Locally conformally flat weakly-Einstein manifolds
    Eduardo García-Río
    Ali Haji-Badali
    Rodrigo Mariño-Villar
    M. Elena Vázquez-Abal
    Archiv der Mathematik, 2018, 111 : 549 - 559
  • [9] Locally conformally flat weakly-Einstein manifolds
    Garcia-Rio, Eduardo
    Haji-Badali, Ali
    Marino-Villar, Rodrigo
    Elena Vazquez-Abal, M.
    ARCHIV DER MATHEMATIK, 2018, 111 (05) : 549 - 559
  • [10] Characterizations of weakly conformally flat and quasi Einstein manifolds
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2023, 114 (02)