RECURSION OPERATORS AND HIERARCHIES OF mKdV EQUATIONS RELATED TO THE KAC-MOODY ALGEBRAS D4(1), D4(2), AND D4(3)

被引:4
|
作者
Gerdjikov, V. S. [1 ,2 ,3 ]
Stefanov, A. A. [1 ,4 ]
Iliev, I. D. [1 ]
Boyadjiev, G. P. [1 ]
Smirnov, A. O. [5 ]
Matveev, V. B. [6 ,7 ]
Pavlov, M. V. [8 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[2] Natl Res Nucl Univ MEPHI, Moscow, Russia
[3] New Bulgarian Univ, Inst Adv Phys Studies, Sofia, Bulgaria
[4] Sofia Univ St Kliment Ohridski, Fac Math & Informat, Sofia, Bulgaria
[5] St Petersburg State Univ Aerosp Instrumentat, St Petersburg, Russia
[6] Russian Acad Sci, Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia
[7] Univ Bourgogne France Comte, Inst Math Bourgogne IMB, Dijon, France
[8] RAS, Lebedev Phys Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
mKdV equation; recursion operator; Kac-Moody algebra; hierarchy of integrable equations; INVERSE SCATTERING; NONLINEAR EQUATIONS; SOLITON-EQUATIONS; CLASSIFICATION; INTEGRABILITY; REDUCTIONS; EVOLUTION;
D O I
10.1134/S0040577920090020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct three nonequivalent gradings in the algebra D-4 similar or equal to so(8). The first is the standard grading obtained with the Coxeter automorphism C-1 = S alpha 2S alpha 1S alpha 3S alpha 4 using its dihedral realization. In the second, we use C-2 = C1R, where R is the mirror automorphism. The third is C-3 = S alpha 2S alpha 1T, where T is the external automorphism of order 3. For each of these gradings, we construct a basis in the corresponding linear subspaces g((k)), the orbits of the Coxeter automorphisms, and the related Lax pairs generating the corresponding modified Korteweg-de Vries (mKdV) hierarchies. We find compact expressions for each of the hierarchies in terms of recursion operators. Finally, we write the first nontrivial mKdV equations and their Hamiltonians in explicit form. For D-4((1)), these are in fact two mKdV systems because the exponent 3 has the multiplicity two in this case. Each of these mKdV systems consists of four equations of third order in partial derivative(x). For D-4((2)), we have a system of three equations of third order in partial derivative(x). For D-4((3)), we have a system of two equations of fifth order in partial derivative(x).
引用
收藏
页码:1110 / 1129
页数:20
相关论文
共 50 条
  • [31] On Demazure crystals for Uq(D4(3))
    Misra, KC
    INFINITE-DIMENSIONAL ASPECTS OF REPRESENTATION THEORY AND APPLICATIONS, 2005, 392 : 83 - 93
  • [32] Perfect crystals for Uq (D4(3))
    Kashiwara, M.
    Misra, K. C.
    Okado, M.
    Yamada, D.
    JOURNAL OF ALGEBRA, 2007, 317 (01) : 392 - 423
  • [33] Dopamine D4 receptor ubiquitination
    Skieterska, Kamila
    Rondou, Pieter
    Van Craenenbroeck, Kathleen
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2016, 44 : 601 - 605
  • [34] Leukotriene D4 receptor antagonists
    Lloyd, AW
    DRUG DISCOVERY TODAY, 1999, 4 (01) : 39 - 40
  • [35] A MODEL FOR THE DOPAMINE D4 PHARMACOPHORE
    Chidester, C. G.
    TenBrink, R. E.
    Leiby, J. A.
    Smith, M. W.
    Romero, A. G.
    Ennis, M. D.
    Ghazal, N. B.
    Schlachter, S. K.
    Bergh, C. L.
    Poel, T. J.
    Huff, R. M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C250 - C250
  • [36] INFINITE DIMENSIONAL REPRESENTATIONS OF D4
    DEAN, A
    ZORZITTO, F
    GLASGOW MATHEMATICAL JOURNAL, 1990, 32 : 25 - 33
  • [37] Stereocontrolled Synthesis of Resolvin D4
    Morita, Masao
    Kobayashi, Yuichi
    JOURNAL OF ORGANIC CHEMISTRY, 2018, 83 (07): : 3906 - 3914
  • [38] SHOT──D4设备介绍
    郝书月,王焕新
    光通信研究, 1994, (Z1) : 61 - 67
  • [39] The local lifting problem for D4
    Bradley Weaver
    Israel Journal of Mathematics, 2018, 228 : 587 - 626
  • [40] Dopamine D4 receptor antagonists
    Kulagowski, JJ
    Patel, S
    CURRENT PHARMACEUTICAL DESIGN, 1997, 3 (04) : 355 - 366