Automatic Segmentation of Meniscus in Multispectral MRI Using Regions with Convolutional Neural Network (R-CNN)

被引:10
|
作者
Olmez, Emre [1 ]
Akdogan, Volkan [2 ]
Korkmaz, Murat [3 ]
Er, Orhan [4 ]
机构
[1] Yozgat Bozok Univ, Dept Mechatron Engn, TR-66200 Yozgat, Turkey
[2] Yozgat Bozok Univ, Dept Elect & Elect Engn, TR-66200 Yozgat, Turkey
[3] Yozgat Bozok Univ, Dept Orthoped Surg, TR-66200 Yozgat, Turkey
[4] Yozgat Bozok Univ, Dept Comp Engn, TR-66200 Yozgat, Turkey
关键词
Automatic segmentation of meniscus; Regions with convolutional neural network; Region proposals; Transfer learning; Deep learning; KNEE MENISCUS;
D O I
10.1007/s10278-020-00329-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The meniscus has a significant function in human anatomy, and Magnetic Resonance Imaging (MRI) has an essential role in meniscus examination. Due to a variety of MRI data, it is excessively difficult to segment the meniscus with image processing methods. An MRI data sequence contains multiple images, and the region features we are looking for may vary from each image in the sequence. Therefore, feature extraction becomes more difficult, and hence, explicitly programming for segmentation becomes more difficult. Convolutional Neural Network (CNN) extracts features directly from images and thus eliminates the need for manual feature extraction. Regions with Convolutional Neural Network (R-CNN) allow us to use CNN features in object detection problems by combining CNN features with Region Proposals. In this study, we designed and trained an R-CNN for detecting meniscus region in MRI data sequence. We used transfer learning for training R-CNN with a small amount of meniscus data. After detection of the meniscus region by R-CNN, we segmented meniscus by morphological image analysis using two different MRI sequences. Automatic detection of the meniscus region with R-CNN made the meniscus segmentation process easier, and the use of different contrast features of two different image sequences allowed us to differentiate the meniscus from its surroundings.
引用
收藏
页码:916 / 929
页数:14
相关论文
共 50 条
  • [21] Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network
    Kurata, Yasuhisa
    Nishio, Mizuho
    Moribata, Yusaku
    Kido, Aki
    Himoto, Yuki
    Otani, Satoshi
    Fujimoto, Koji
    Yakami, Masahiro
    Minamiguchi, Sachiko
    Mandai, Masaki
    Nakamoto, Yuji
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [22] Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network
    Yasuhisa Kurata
    Mizuho Nishio
    Yusaku Moribata
    Aki Kido
    Yuki Himoto
    Satoshi Otani
    Koji Fujimoto
    Masahiro Yakami
    Sachiko Minamiguchi
    Masaki Mandai
    Yuji Nakamoto
    Scientific Reports, 11
  • [23] Automatic Crack Detection using Mask R-CNN
    Attard, Leanne
    Debono, Carl James
    Valentino, Gianluca
    di Castro, Mario
    Masi, Alessandro
    Scibile, Luigi
    PROCEEDINGS OF THE 2019 11TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2019), 2019, : 152 - 157
  • [24] Automatic Windowing for MRI With Convolutional Neural Network
    Zhao, Xiaole
    Zhang, Tao
    Liu, Hangfei
    Zhu, Gaiyan
    Zou, Xueming
    IEEE ACCESS, 2019, 7 : 68594 - 68606
  • [25] Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN
    Meng, Jie
    Xue, Linyan
    Chang, Ying
    Zhang, Jianguang
    Chang, Shilong
    Liu, Kun
    Liu, Shuang
    Wang, Bangmao
    Yang, Kun
    OPEN LIFE SCIENCES, 2020, 15 (01): : 588 - 596
  • [26] Automatic in-situ instance and semantic segmentation of planktonic organisms using Mask R-CNN
    Bergum, Sondre
    Saad, Aya
    Stahl, Annette
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [27] Automatic breast segmentation in digital mammography using a convolutional neural network
    Maghsoudi, Omid Haji
    Gastounioti, Aimilia
    Pantalone, Lauren
    Conant, Emily
    Kontos, Despina
    15TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI2020), 2020, 11513
  • [28] Automatic Tumor Segmentation With a Convolutional Neural Network in Multiparametric MRI: Influence of Distortion Correction
    Bielak, Lars
    Wiedenmann, Nicole
    Nicolay, Nils Henrik
    Lottner, Thomas
    Fischer, Johannes
    Bunea, Hatice
    Grosu, Anca-Ligia
    Bock, Michael
    TOMOGRAPHY, 2019, 5 (03) : 292 - 299
  • [29] A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI
    Dou, Haoran
    Karimi, Davood
    Rollins, Caitlin K.
    Ortinau, Cynthia M.
    Vasung, Lana
    Velasco-Annis, Clemente
    Ouaalam, Abdelhakim
    Yang, Xin
    Ni, Dong
    Gholipour, Ali
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (04) : 1123 - 1133
  • [30] AUTOMATIC RENAL SEGMENTATION IN DCE-MRI USING CONVOLUTIONAL NEURAL NETWORKS
    Haghighi, Marzieh
    Warfield, Simon K.
    Kurugol, Sila
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1534 - 1537