Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes

被引:161
|
作者
Li, Zhenming [1 ]
Lu, Tianshi [1 ]
Liang, Xuhui [1 ]
Dong, Hua [1 ]
Ye, Guang [1 ,2 ]
机构
[1] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat Mech Management & Design, Delft, Netherlands
[2] Univ Ghent, Dept Struct Engn, Magnel Lab Concrete Res, Ghent, Belgium
关键词
Shrinkage; Mechanism; Alkali-activated slag; Fly ash; Modelling; BLAST-FURNACE SLAG; A-S-H; AMBIENT-TEMPERATURE; REACTION-KINETICS; DRYING SHRINKAGE; PORE SOLUTION; HYDRATION; BEHAVIOR; MORTARS; DEFORMATION;
D O I
10.1016/j.cemconres.2020.106107
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study aims to provide a better understanding of the autogenous shrinkage of slag and fly ash-based alkali-activated materials (AAMs) cured at ambient temperature. The main reaction products in AAMs pastes are C-A-SH type gel and the reaction rate decreases when slag is partially replaced by fly ash. Due to the chemical shrinkage and the fine pore structure of AAMs pastes, drastic drop of internal relative humidity is observed and large pore pressure is generated. The pore pressure induces not only elastic deformation but also a large creep of the paste. Besides the pore pressure, other driving forces, like the reduction of steric-hydration force due to the consumption of ions, also cause a certain amount of shrinkage, especially in the acceleration period. Based on the mechanisms revealed, a computational model is proposed to estimate the autogenous shrinkage of AAMs. The calculated autogenous shrinkage matches well with the measured results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers
    Jang, J. G.
    Lee, N. K.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 50 : 169 - 176
  • [22] Autogenous shrinkage of alkali-activated slag: A critical review
    Li, Zhenming
    Chen, Yun
    Provis, John L.
    Cizer, Ozlem
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2023, 172
  • [23] Autogenous and drying shrinkage of alkali-activated slag mortars
    Hu, Xiang
    Shi, Caijun
    Zhang, Zuhua
    Hu, Zhangli
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4963 - 4975
  • [24] Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin
    Li, Zhenming
    Nedeljkovic, Marija
    Chen, Boyu
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2019, 122 : 30 - 41
  • [25] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Aiken, Timothy A.
    Kwasny, Jacek
    Zhou, Zuyao
    Mcpolin, Daniel
    Sha, Wei
    MRS ADVANCES, 2023, 8 (22) : 1266 - 1272
  • [26] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Timothy A. Aiken
    Jacek Kwasny
    Zuyao Zhou
    Daniel McPolin
    Wei Sha
    MRS Advances, 2023, 8 : 1266 - 1272
  • [27] Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag
    Huang, Dunwen
    Yuan, Qiaoming
    Chen, Peng
    Tian, Xiang
    Peng, Hui
    JOURNAL OF BUILDING ENGINEERING, 2022, 62
  • [28] Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials
    Cui, Peng
    Wan, Yuanyuan
    Shao, Xuejun
    Ling, Xinyu
    Zhao, Long
    Gong, Yongfan
    Zhu, Chenhui
    MATERIALS, 2023, 16 (11)
  • [29] Effect of CaO on the shrinkage and microstructure of alkali-activated slag/ fly ash microsphere
    Zhang, Liu
    Ma, Yuwei
    Ouyang, Xiaowei
    Fu, Jiyang
    Li, Zongjin
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 421
  • [30] Development of autogenous shrinkage prediction model of alkali-activated slag-fly ash geopolymer based on machine learning
    Shen, Jiale
    Li, Yue
    Lin, Hui
    Li, Yaqiang
    JOURNAL OF BUILDING ENGINEERING, 2023, 71