Yet another generalization of the Ramanujan-Nagell equation

被引:6
|
作者
Bennett, M. A. [1 ]
Filaseta, M. [2 ]
Trifonov, O. [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
hypergeometric method; Pade approximants; Ramanujan-Nagell equation;
D O I
10.4064/aa134-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [21] 关于广义Ramanujan-Nagell方程(Ⅰ)
    乐茂华
    科学通报 , 1984, (05) : 268 - 271
  • [22] On two generalized Ramanujan-Nagell equations
    Fujita, Yasutsugu
    Le, Maohua
    Terai, Nobuhiro
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [23] 关于广义Ramanujan-Nagell方程(Ⅱ)
    乐茂华
    科学通报 , 1985, (05) : 396 - 396
  • [24] ON THE GENERALIZED RAMANUJAN-NAGELL EQUATION X2-D=PN
    LE, MH
    ACTA ARITHMETICA, 1991, 58 (03) : 289 - 298
  • [25] Solutions of some generalized Ramanujan-Nagell equations
    Saradha, N.
    Srinivasan, Anitha
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (01): : 103 - 114
  • [26] On the generalized Ramanujan-Nagell equation x2+D=pz
    Heuberger, C
    Le, MH
    JOURNAL OF NUMBER THEORY, 1999, 78 (02) : 312 - 331
  • [27] ON TWO DIOPHANTINE EQUATIONS OF RAMANUJAN-NAGELL TYPE
    Zhang, Zhongfeng
    Togbe, Alain
    GLASNIK MATEMATICKI, 2016, 51 (01) : 17 - 22
  • [28] ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION Dx2 + kn = B
    Zhang, Zhongfeng
    Togbe, Alain
    GLASNIK MATEMATICKI, 2021, 56 (02) : 263 - 270
  • [29] SOME RAMANUJAN-NAGELL EQUATIONS WITH MANY SOLUTIONS
    MOREE, P
    STEWART, CL
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (04): : 465 - 472
  • [30] RAMANUJAN-NAGELL TYPE EQUATIONS AND PERFECT NUMBERS
    Ellia, Philippe
    Menegatti, Paolo
    FIBONACCI QUARTERLY, 2015, 53 (01): : 78 - 80