Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration

被引:152
|
作者
Li, Junhong [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Iterative identification; Hammerstein models; Maximum likelihood; Newton iteration; IDENTIFICATION METHODS; ESTIMATION ALGORITHM; MODELS;
D O I
10.1016/j.aml.2012.03.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Newton iteration is basic for solving nonlinear optimization problems and studying parameter estimation algorithms. In this letter, a maximum likelihood estimation algorithm is developed for estimating the parameters of Hammerstein nonlinear controlled autoregressive autoregressive moving average (CARARMA) systems by using the Newton iteration. A simulation example is provided to show the effectiveness of the proposed algorithm. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 50 条
  • [21] Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    SIGNAL PROCESSING, 2016, 128 : 417 - 425
  • [22] Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
    Wang, Dongqing
    Chu, Yanyun
    Yang, Guowei
    Ding, Feng
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 309 - 317
  • [23] Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems
    Ding, Feng
    Liu, Ximei
    Chen, Huibo
    Yao, Guoyu
    SIGNAL PROCESSING, 2014, 97 : 31 - 39
  • [24] Parameter identification based on prescribed estimation error performance for extended Wiener-Hammerstein systems
    Li, Linwei
    Ren, Xuemei
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (02): : 304 - 312
  • [25] Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems
    Chen, Huibo
    Ding, Feng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2436 - 2441
  • [26] Parameter Estimation of Wiener Systems Based on the Particle Swarm Iteration and Gradient Search Principle
    Li, Junhong
    Zong, Tiancheng
    Gu, Juping
    Hua, Liang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (07) : 3470 - 3495
  • [27] Parameter Estimation for Control of Hammerstein Systems with Dead-Zone Nonlinearity
    Li, Linwei
    Ren, Xuemei
    Lv, Yongfeng
    INNOVATIVE TECHNIQUES AND APPLICATIONS OF MODELLING, IDENTIFICATION AND CONTROL, 2018, 467 : 109 - 118
  • [28] Parameter estimation for Hammerstein control autoregressive systems using differential evolution
    Ammara Mehmood
    Muhammad Saeed Aslam
    Naveed Ishtiaq Chaudhary
    Aneela Zameer
    Muhammad Asif Zahoor Raja
    Signal, Image and Video Processing, 2018, 12 : 1603 - 1610
  • [29] Decoupled Parameter Estimation Methods for Hammerstein Systems by Using Filtering Technique
    Wang, Dongqing
    Zhang, Zhen
    Xue, Bingqiang
    IEEE ACCESS, 2018, 6 : 66612 - 66620
  • [30] Parameter Estimation of Wiener Systems Based on the Particle Swarm Iteration and Gradient Search Principle
    Junhong Li
    Tiancheng Zong
    Juping Gu
    Liang Hua
    Circuits, Systems, and Signal Processing, 2020, 39 : 3470 - 3495