Brieskorn manifolds, positive Sasakian geometry, and contact topology

被引:6
|
作者
Boyer, Charles P. [1 ]
Macarini, Leonardo [2 ]
van Koert, Otto [3 ,4 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21941909 Rio De Janeiro, Brazil
[3] Seoul Natl Univ, Dept Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
[4] Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
关键词
Brieskorn manifolds; equivariant symplectic homology; positive Sasakian structure; mean Euler characteristic; Sasaki-Einstein metric; EINSTEIN-METRICS; RICCI CURVATURE; SPHERES; HOMOLOGY; 5-MANIFOLDS;
D O I
10.1515/forum-2015-0142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using S-1 -equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn-Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of S-2 x S-3 and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many components. We also apply our results to give lower bounds on the number of components of the moduli space of Sasaki-Einstein metrics on certain homotopy spheres. Finally, a new family of Sasaki-Einstein metrics of real dimension 20 on S-5 is exhibited.
引用
收藏
页码:943 / 965
页数:23
相关论文
共 50 条
  • [21] On lightlike geometry of indefinite Sasakian statistical manifolds
    Bahadir, Oguzhan
    AIMS MATHEMATICS, 2021, 6 (11): : 12845 - 12862
  • [22] Differential geometry of quasi-Sasakian manifolds
    Kirichenko, VF
    Rustanov, AR
    SBORNIK MATHEMATICS, 2002, 193 (7-8) : 1173 - 1201
  • [23] On Lightlike Geometry of Para-Sasakian Manifolds
    Acet, Bilal Eftal
    Perktas, Selcen Yuksel
    Kilic, Erol
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [24] On the geometry of nearly trans-Sasakian manifolds
    Rustanov, Aligadzhi R.
    Melekhina, Tatiana L.
    Kharitonova, Svetlana V.
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1144 - 1157
  • [25] THE GEOMETRY OF 3-QUASI-SASAKIAN MANIFOLDS
    Cappelletti Montano, Beniamino
    De Nicola, Antonio
    Dileo, Giulia
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (09) : 1081 - 1105
  • [26] Geometry of Tubes About ϕ-Geodesics on Sasakian Manifolds
    M. Djorić
    Acta Mathematica Hungarica, 1997, 75 : 137 - 159
  • [27] Branched holomorphic Cartan geometry on Sasakian manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    Schumacher, Georg
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (02) : 259 - 278
  • [28] ALMOST CONTACT STRUCTURES ON BRIESKORN MANIFOLDS AND COMPLEX STRUCTURES ON THEIR PRODUCTS
    ABE, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A324 - A324
  • [29] Cylindrical contact homology of 3-dimensional Brieskorn manifolds
    Haney, Sebastian
    Mark, Thomas E.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 153 - 187
  • [30] ON K-CONTACT RIEMANNIAN AND SASAKIAN MANIFOLDS
    MISHRA, RS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (05): : 537 - 544