Brieskorn manifolds, positive Sasakian geometry, and contact topology
被引:6
|
作者:
Boyer, Charles P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USAUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
Boyer, Charles P.
[1
]
Macarini, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21941909 Rio De Janeiro, BrazilUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
Macarini, Leonardo
[2
]
van Koert, Otto
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South KoreaUniv New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
van Koert, Otto
[3
,4
]
机构:
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21941909 Rio De Janeiro, Brazil
[3] Seoul Natl Univ, Dept Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
[4] Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
Using S-1 -equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn-Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of S-2 x S-3 and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many components. We also apply our results to give lower bounds on the number of components of the moduli space of Sasaki-Einstein metrics on certain homotopy spheres. Finally, a new family of Sasaki-Einstein metrics of real dimension 20 on S-5 is exhibited.
机构:
Seoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402,San 56-1, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
Kwon, Myeonggi
van Koert, Otto
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402,San 56-1, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 151747, South Korea
机构:
Univ Transilvania Brasov, Fac Math & Informat, Dept Equat, Brasov 2200, RomaniaUniv Transilvania Brasov, Fac Math & Informat, Dept Equat, Brasov 2200, Romania
机构:
Department of Mathematics, Boǧaziçi Üniversitesi, TR-34342 Bebek, IstanbulDepartment of Mathematics, Boǧaziçi Üniversitesi, TR-34342 Bebek, Istanbul
Öztürk F.
Niederkrüger K.
论文数: 0引用数: 0
h-index: 0
机构:
Département de Mathématiques, Université Libre de Bruxelles, Boulevard du TriompheDepartment of Mathematics, Boǧaziçi Üniversitesi, TR-34342 Bebek, Istanbul