Manifold Learning for 4D CT Reconstruction of the Lung

被引:0
|
作者
Georg, Manfred [1 ]
Souvenir, Richard [2 ]
Hope, Andrew [3 ]
Pless, Robert [1 ]
机构
[1] Washington Univ, St Louis, MO 63130 USA
[2] Univ N Carolina, Charlotte, NC 28223 USA
[3] Univ Toronto, Toronto, ON M5G 2M9, Canada
来源
2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3 | 2008年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computed Tomography is used to create models of lung dynamics because it provides high contrast images of lung tissue. Creating 4D CT models which capture dynamics is complicated because clinical CT scanners capture data in slabs that comprise only a small part of the tissue. Commonly, creating 4D reconstruction requires stitching together different lung segments based on an external measure of lung volume. This paper presents a novel method for assembling 4D CT datasets using only the CT data. We use a manifold learning algorithm to parameterize each slab data with respect to the breathing cycle, and an alignment method to coordinate these parameterizations for different sections of the lung. Comparing this data driven parameterization with physiological measurements captured by a belt around the abdomen, we are able to generate slightly smoother reconstructions.
引用
收藏
页码:558 / +
页数:3
相关论文
共 50 条
  • [41] 4D CT Deformable Registration Using Unsupervised Deep Learning for Lung Stereotactic Body Radiation Therapy
    Yang, X.
    Fu, Y.
    Lei, Y.
    Tian, Z.
    Wang, T.
    Higgins, K. A.
    Shelton, J. W.
    Bradley, J. D.
    Curran, W. J., Jr.
    Liu, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E342 - E343
  • [42] 4D Reconstruction of Blooming Flowers
    Zheng, Qian
    Fan, Xiaochen
    Gong, Minglun
    Sharf, Andrei
    Deussen, Oliver
    Huang, Hui
    COMPUTER GRAPHICS FORUM, 2017, 36 (06) : 405 - 417
  • [43] Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI
    Lantz, Jonas
    Gupta, Vikas
    Henriksson, Lilian
    Karlsson, Matts
    Persson, Anders
    Carlhall, Carl-Johan
    Ebbers, Tino
    RADIOLOGY, 2018, 289 (01) : 51 - 58
  • [44] Registration of 4D CBCT and 4D CT for extracranial stereotactic treatments
    Elder, E.
    Schreibmann, E.
    Li, T.
    Fox, T.
    Xing, L.
    Crocker, J.
    Landry, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 66 (03): : S651 - S651
  • [45] Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction
    Madesta, Frederic
    Sentker, Thilo
    Gauer, Tobias
    Werner, Rene
    MEDICAL PHYSICS, 2020, 47 (11) : 5619 - 5631
  • [46] IMAGING PROCEDURE FOR PLANNING 4D CT OF RADIOTHERAPY IN TUMORS OF THE BREAST AND LUNG
    Lopez Rosales, M. D. A.
    Ortega Ruiz, M. G.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S581 - S582
  • [47] A fast deformable registration method for 4D lung CT in hybrid framework
    Xia, Wei
    Gao, Xin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (04) : 523 - 533
  • [48] Planning lung radiotherapy using 4D CT data and a motion model
    Colgan, R.
    McClelland, J.
    McQuaid, D.
    Evans, P. M.
    Hawkes, D.
    Brock, J.
    Landau, D.
    Webb, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (20): : 5815 - 5830
  • [49] A fast deformable registration method for 4D lung CT in hybrid framework
    Wei Xia
    Xin Gao
    International Journal of Computer Assisted Radiology and Surgery, 2014, 9 : 523 - 533
  • [50] Tracking the motion trajectories of junction structures in 4D CT images of the lung
    Xiong, Guanglei
    Chen, Chuangzhen
    Chen, Jianzhou
    Xie, Yaoqin
    Xing, Lei
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (15): : 4905 - 4930