Manifold Learning for 4D CT Reconstruction of the Lung

被引:0
|
作者
Georg, Manfred [1 ]
Souvenir, Richard [2 ]
Hope, Andrew [3 ]
Pless, Robert [1 ]
机构
[1] Washington Univ, St Louis, MO 63130 USA
[2] Univ N Carolina, Charlotte, NC 28223 USA
[3] Univ Toronto, Toronto, ON M5G 2M9, Canada
来源
2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3 | 2008年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computed Tomography is used to create models of lung dynamics because it provides high contrast images of lung tissue. Creating 4D CT models which capture dynamics is complicated because clinical CT scanners capture data in slabs that comprise only a small part of the tissue. Commonly, creating 4D reconstruction requires stitching together different lung segments based on an external measure of lung volume. This paper presents a novel method for assembling 4D CT datasets using only the CT data. We use a manifold learning algorithm to parameterize each slab data with respect to the breathing cycle, and an alignment method to coordinate these parameterizations for different sections of the lung. Comparing this data driven parameterization with physiological measurements captured by a belt around the abdomen, we are able to generate slightly smoother reconstructions.
引用
收藏
页码:558 / +
页数:3
相关论文
共 50 条
  • [1] 4D Iterative Reconstruction in Cardiac CT
    Bruder, H.
    Raupach, R.
    Allmendinger, T.
    Sunnegardh, J.
    Stierstorfer, K.
    Flohr, T.
    MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [2] 4D CT lung ventilation images are affected by the 4D CT sorting method
    Yamamoto, Tokihiro
    Kabus, Sven
    Lorenz, Cristian
    Johnston, Eric
    Maxim, Peter G.
    Diehn, Maximilian
    Eclov, Neville
    Barquero, Cristian
    Loo, Billy W., Jr.
    Keall, Paul J.
    MEDICAL PHYSICS, 2013, 40 (10)
  • [3] 4D Lung Reconstruction with Phase Optimization
    Lyksborg, Mark
    Paulsen, Rasmus
    Brink, Carsten
    Larsen, Rasmus
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 2227 - 2230
  • [4] Validation of 4D CT Image Reconstruction Using a 3D Lung Phantom
    Zheng, Y.
    Girbino, M.
    Oshinsky, R.
    Vroege, L.
    Jesseph, F.
    Lee, S.
    Yuan, J.
    Machtay, M.
    Sohn, J.
    MEDICAL PHYSICS, 2017, 44 (06)
  • [5] Deep learning-based 4D synthetic CT for lung radiotherapy
    Maspero, M.
    Keijnemans, K.
    Hackett, S. L.
    Raaymakers, B. W.
    Verhoeff, J. J. C.
    Fast, M. F.
    van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S689 - S690
  • [6] Reconstruction of 4D deformed CT for moving anatomy
    Alen Docef
    Martin J. Murphy
    International Journal of Computer Assisted Radiology and Surgery, 2008, 3 : 591 - 598
  • [7] Reconstruction of 4D deformed CT for moving anatomy
    Docef, Alen
    Murphy, Martin J.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2008, 3 (06) : 591 - 598
  • [8] On-Treatment 4D CT Reconstruction From Planning 4D CT Using Linear Amplitude Scaling
    Park, S.
    Jung, J.
    Kim, J.
    Yeo, I.
    Yi, B.
    MEDICAL PHYSICS, 2016, 43 (06) : 3434 - 3434
  • [9] Modeling of Airway in 4D Lung CT Images
    Rasheed, Zahid
    Magee, Derek
    2012 INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE (ICRAI), 2012, : 187 - 194
  • [10] 4D CT image reconstruction with diffeomorphic motion model
    Hinkle, Jacob
    Szegedi, Martin
    Wang, Brian
    Salter, Bill
    Joshi, Sarang
    MEDICAL IMAGE ANALYSIS, 2012, 16 (06) : 1307 - 1316