Determination of brain injury biomarkers by surface-enhanced Raman scattering using hollow gold nanospheres

被引:33
|
作者
Wang, Ying [1 ,2 ]
Zhao, Peng [1 ,2 ]
Mao, Leilei [2 ]
Hou, Yajun [2 ]
Li, Dawei [2 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
[2] Taishan Med Univ, Life Sci Res Ctr, Key Lab Cerebral Microcirculat Univ Shandong, Taishan 271016, Peoples R China
来源
RSC ADVANCES | 2018年 / 8卷 / 06期
基金
中国国家自然科学基金;
关键词
SERS NANOPROBES; GRAPHENE OXIDE; CANCER; NANOPARTICLES; NANOSTARS; SPECTROSCOPY; ORGANIZATION; FABRICATION; ABSORPTION; NANORODS;
D O I
10.1039/c7ra12410d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of rapid, highly sensitive detection methods for neuron-specific enolase (NSE) and S100-beta protein is very important as the levels of NSE and S100-beta protein in the blood are closely related to brain injury. Therefore, we can use NSE and S100-beta protein concentration detection to realize the preliminary judgment of brain injury. In this paper, we report that a simple label-free three dimensional hierarchical plasmonic nano-architecture has been designed for the sensitive surface-enhanced Raman scattering immunosensor detection of NSE and S100-beta. Owing to the active group of the hollow gold nanospheres (HAuNPs), the redox molecules 4-mercaptobenzoic acid (4-MBA) and Nile blue A (NBA) absorb antibodies and provide signal generation. The prepared HAuNPs@4-MBA and HAuNPs@NBA are used as probes to easily construct a surface-enhanced Raman scattering immunosensor. When protein biomarkers are present, the sandwich nanoparticles are captured over the substrate, forming a confined plasmonic field, leading to an enhanced electromagnetic field in intensity and in space. As a result, the Raman reporter molecules are exposed to a high density of "hot spots", which remarkably amplify the Raman signal, improving the sensitivity of the surface-enhanced Raman scattering immunosensor. Under the optimized conditions, the linear range of the proposed immunosensor is from 0.2 to 22 ng mL(-1) for both NSE and S100-beta. The lowest detectable concentration is 0.1 and 0.06 ng mL(-1) for NSE and S100-beta, respectively. The assay results for serum samples with the proposed method were in a good agreement with the standard enzyme-linked immunosorbent assay method. The proposed immunosensor is promising in clinical diagnosis. This method, which utilizes the surface-enhanced Raman scattering of HAuNPs, has great potential in the detection of biomarkers, which are vital in medical diagnoses and disease monitoring.
引用
收藏
页码:3143 / 3150
页数:8
相关论文
共 50 条
  • [41] Charge-transfer contribution to surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering of dyes at silver and gold electrodes
    Kudelski, A
    Bukowska, J
    CHEMICAL PHYSICS LETTERS, 1996, 253 (3-4) : 246 - 250
  • [42] Optimized surface-enhanced Raman scattering on gold nanoparticle arrays
    Félidj, N
    Aubard, J
    Lévi, G
    Krenn, JR
    Hohenau, A
    Schider, G
    Leitner, A
    Aussenegg, FR
    APPLIED PHYSICS LETTERS, 2003, 82 (18) : 3095 - 3097
  • [43] Aligned gold nanoneedle arrays for surface-enhanced Raman scattering
    Yang, Yong
    Tanemura, Masaki
    Huang, Zhengren
    Jiang, Dongliang
    Li, Zhi-Yuan
    Huang, Ying-ping
    Kawamura, Go
    Yamaguchi, Kohei
    Nogami, Masayuki
    NANOTECHNOLOGY, 2010, 21 (32)
  • [44] Surface-Enhanced Raman Scattering
    Culha, Mustafa
    Lavrik, Nickolay
    Cullum, Brian M.
    Astilean, Simion
    JOURNAL OF NANOTECHNOLOGY, 2012, 2012
  • [45] Surface-enhanced Raman scattering
    Vo-Dinh, Tuan
    Yan, Fei
    Optical Chemical Sensors, 2006, 224 : 239 - 259
  • [46] Surface-enhanced Raman scattering
    Kneipp, Katrin
    PHYSICS TODAY, 2007, 60 (11) : 40 - 46
  • [47] Surface-enhanced Raman scattering
    Graham, Duncan
    van Duyne, Richard
    Ren, Bin
    ANALYST, 2016, 141 (17) : 4995 - 4995
  • [48] Surface-enhanced Raman scattering
    Campion, A
    Kambhampati, P
    CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) : 241 - 250
  • [49] Mono-metal epitaxial growth for hollow gold microsheets and their hybrids for surface-enhanced Raman scattering
    Wang, Jie
    Chen, Yu
    Xu, Tao
    Liu, Jinxin
    Zhu, Peng
    Huang, Han
    Ouyang, Fangping
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (06):
  • [50] Mono-metal epitaxial growth for hollow gold microsheets and their hybrids for surface-enhanced Raman scattering
    Jie Wang
    Yu Chen
    Tao Xu
    Jinxin Liu
    Peng Zhu
    Han Huang
    Fangping Ouyang
    Applied Physics A, 2020, 126