Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography

被引:8
|
作者
Wang, Ling [2 ,3 ]
Hofer, Bernd [1 ]
Guggenheim, Jeremy A. [2 ]
Povazay, Boris [1 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria
[2] Cardiff Univ, Sch Optometry & Vis Sci, Cardiff CF24 4LU, S Glam, Wales
[3] Katholieke Univ Leuven, Dept Biosyst, Fac Biosci Engn, B-3001 Heverlee, Belgium
关键词
optical coherence tomography; medical imaging; interferometers; graphics processing unit; dispersion; ULTRAHIGH-SPEED; AXIAL SCANS; NM;
D O I
10.1117/1.JBO.17.7.077007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling the spatial signal range to cover the full positive and negative sampling range. Previously the computational complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to CPU-based processing and thereby overcomes these limitations. implemented on a commercial low-cost GPU, a display line rate of similar to 21,000 depth scans/s for 2048 samples/depth scan using 10 iterations of the fast DEFR algorithm has been achieved, sufficient for real-time visualization in situ. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.7.077007]
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography
    Zhang, K.
    Kang, J. U.
    ELECTRONICS LETTERS, 2011, 47 (05) : 309 - U32
  • [42] Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
    Witte, S.
    Baclayon, M.
    Peterman, E. J. G.
    Toonen, R. F. G.
    Mansvelder, H. D.
    Groot, M. L.
    OPTICS EXPRESS, 2009, 17 (14): : 11335 - 11349
  • [43] Detection and compensation of dispersion mismatch for frequency-domain optical coherence tomography based on A-scan's spectrogram
    Ni, Guangming
    Liu, Lin
    Liu, Juanxiu
    Zhang, Jing
    Wang, Xiangzhou
    Du, Xiaohui
    Liu, Yong
    OPTICS EXPRESS, 2020, 28 (13) : 19229 - 19241
  • [44] Full-range space-division multiplexing optical coherence tomography angiography
    Huang, Yongyang
    Jerwick, Jason
    Liu, Guoyan
    Zhou, Chao
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (08): : 4817 - 4834
  • [45] Dispersion Encoded Full Range Fourier Domain Optical Coherence Tomography for Image-Guidance of Fs-Laser Lens Surgery
    Matthias, B.
    Ripken, T.
    Krueger, A.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S531 - +
  • [46] Frequency-domain optical coherence tomography based on minimum-phase functions
    Ozcan, A.
    Digonnet, M. J. F.
    Kino, G. S.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE X, 2006, 6079
  • [47] Optical coherence tomography by adopting frequency-domain optical delay line
    Shi, Guo-Hua
    Ding, Zhi-Hua
    Rao, Xue-Jun
    Zhang, Yu-Dong
    Guangdian Gongcheng/Opto-Electronic Engineering, 2006, 33 (10): : 1 - 4
  • [48] Intravascular Frequency-domain Optical Coherence Tomography Imaging System
    Tao Kuiyuan
    Liu Tiegen
    Ding Zhenyang
    Zhou Yonghan
    Liu Kun
    Jiang Junfeng
    Hu Haofeng
    Kuang Hao
    Liu Zixu
    2016 15TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2016,
  • [49] Frequency-Domain Intravascular Optical Coherence Tomography of the Femoropopliteal Artery
    Dimitris Karnabatidis
    Konstantinos Katsanos
    Ioannis Paraskevopoulos
    Athanasios Diamantopoulos
    Stavros Spiliopoulos
    Dimitris Siablis
    CardioVascular and Interventional Radiology, 2011, 34 : 1172 - 1181
  • [50] Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography
    Zotter, Stefan
    Pircher, Michael
    Goetzinger, Erich
    Torzicky, Teresa
    Bonesi, Marco
    Hitzenberger, Christoph K.
    OPTICS LETTERS, 2010, 35 (23) : 3913 - 3915