Unsupervised learning of probabilistic models for robot navigation

被引:0
|
作者
Koenig, S [1 ]
Simmons, RG [1 ]
机构
[1] CARNEGIE MELLON UNIV,SCH COMP SCI,PITTSBURGH,PA 15213
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:2301 / 2308
页数:8
相关论文
共 50 条
  • [11] ROBOT NAVIGATION WITH LEARNING
    ZELINSKY, A
    AUSTRALIAN COMPUTER JOURNAL, 1988, 20 (02): : 85 - 93
  • [12] Unsupervised Representation Learning from Pre-trained Diffusion Probabilistic Models
    Zhang, Zijian
    Zhao, Zhou
    Lin, Zhijie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [13] Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation and recognition
    Chen, Yuanhao
    Zhu, Long
    Yuille, Alan
    Zhang, Hongjiang
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 31 - +
  • [14] Covariance in Unsupervised Learning of Probabilistic Grammars
    Cohen, Shay B.
    Smith, Noah A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3017 - 3051
  • [15] Simulation of Mobile Robot Navigation Utilizing Reinforcement and Unsupervised Weightless Neural Network Learning Algorithm
    Yusof, Yusman
    Mansor, H. M. Asri H.
    Baba, H. M. Dani
    2015 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2015, : 123 - 128
  • [16] Manifold learning for robot navigation
    Keeratipranon, Narongdech
    Maire, Frederic
    Huang, Henry
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (05) : 383 - 392
  • [17] DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models
    Yang, Tao
    Wang, Yuwang
    Lu, Yan
    Zheng, Nanning
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] Humanoid robot navigation by probabilistic multiple stereo matching
    Yamaguchi, T
    Kao, S
    Watabe, K
    Kunitachi, T
    Itoh, H
    PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE, 2004, : 359 - 364
  • [19] Learning hierarchical partially observable Markov decision process models for robot navigation
    Theocharous, G
    Rohanimanesh, K
    Mahadevan, S
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 511 - 516
  • [20] Object learning and detection using evolutionary deformable models for mobile robot navigation
    Mata, M.
    Armingol, J. M.
    Fernanez, J.
    de la Escalera, A.
    ROBOTICA, 2008, 26 (01) : 99 - 107