Titanium surfaces characteristics modulate macrophage polarization

被引:69
|
作者
Zhang, Yang [1 ]
Cheng, Xian [1 ]
Jansen, John A. [1 ]
Yang, Fang [1 ]
van den Beucken, Jeroen J. J. P. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biomat, Nijmegen, Netherlands
关键词
Metallic implants; Roughness; Hydroxyapatite coating; M1/M2; macrophages; Material-activated phenotype; PROTEIN-ADSORPTION; BONE INTEGRATION; IMPLANT SURFACES; CELL-SHAPE; TOPOGRAPHY; OSSEOINTEGRATION; DIFFERENTIATION; ROUGHNESS; FRACTURE; PHENOTYPE;
D O I
10.1016/j.msec.2018.10.065
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Monocytes/macrophages are one of the first cell types that interact with dental and orthopedic metallic implants, after which these interactions result in a cascade of events that further determine the bone healing performance around implants. This process was recently indicated to be closely dependent on M1/M2 macrophage phenotypes. However, how clinically related physical and chemical implant surface parameters affect macrophage phenotype is incompletely understood. Here, we created and characterized a series of titanium disks with different surface roughness from the submicron to micron level and provided with or without a hydroxyapatite (HA) coating. Human THP-1 derived macrophages were cultured on these different surfaces along with conventional M1 and M2 macrophage controls on glass slides. Macrophage adhesion and polarization were assessed by DNA content, specific cytokine secretion and gene expression profiling, and immunostaining The data demonstrated that an HA coating rather than roughness remarkably affected macrophage adhesion. Compared to M1 and M2 macrophage controls, different roughness or an HA-coating led to macrophage polarization into a specific surface-associated state. Interestingly, only a narrow range of roughness (Ra = 0.51-1.36 mu m; Sa = 0.66-2.91 mu m) tended to polarize adherent macrophages toward M2 phenotype by downregulating pro-inflammatory and upregulating anti-inflammatory cytokine secretion, gene expression and surface marker expression. In contrast, the presence of an HA-coating resulted in a hybrid macrophage subtype with both M1 and M2 characteristics. In conclusion, our data demonstrated that physical and chemical surface properties elicit material-activated macrophage polarization and indicate the potential of using physicochemical surface modifications to steer macrophage response and behavior in support of the success of metallic implants.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [21] Macrophage-Derived Nanosponges Adsorb Cytokines and Modulate Macrophage Polarization for Renal Cell Carcinoma Immunotherapy
    Jiang, Yao
    Nie, Disen
    Hu, Zhihao
    Zhang, Chao
    Chang, Lingdi
    Li, Yu
    Li, Zhengxuan
    Hu, Wei
    Li, Hongji
    Li, Sikai
    Xu, Chao
    Liu, Shaojie
    Yang, Fa
    Wen, Weihong
    Han, Donghui
    Zhang, Keying
    Qin, Weijun
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (20)
  • [22] Caspases/NOX2 axis: a potential target to modulate macrophage polarization
    Solier, S.
    Meziani, L.
    Mondini, M.
    Lacout, C.
    Martinou, J. C.
    Vandenabeele, P.
    Vanden Berghe, T.
    Deutsch, E.
    Droin, N.
    Dupuy, C.
    Dang, P. M.
    El-Benna, J.
    Solary, E.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2016, 46 : 93 - 93
  • [23] Statins Modulate Microenvironmental Cues Driving Macrophage Polarization in Simulated Periodontal Inflammation
    Alkakhan, Waleed
    Farrar, Nico
    Sikora, Vanessa
    Emecen-Huja, Pinar
    Huja, Sarandeep S.
    Yilmaz, Ozlem
    Pandruvada, Subramanya N.
    CELLS, 2023, 12 (15)
  • [24] Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization
    Shayan, Mandis
    Padmanabhan, Jagannath
    Morris, Aaron H.
    Cheung, Bettina
    Smith, Ryan
    Schroers, Jan
    Kyriakides, Themis R.
    ACTA BIOMATERIALIA, 2018, 75 : 427 - 438
  • [25] B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis
    Benard, Alan
    Sakwa, Imme
    Schierloh, Pablo
    Colom, Andre
    Mercier, Ingrid
    Tailleux, Ludovic
    Jouneau, Luc
    Boudinot, Pierre
    Al-Saati, Talal
    Lang, Roland
    Rehwinkel, Jan
    Loxton, Andre G.
    Kaufmann, Stefan H. E.
    Anton-Leberre, Veronique
    O'Garra, Anne
    Del Carmen Sasiain, Maria
    Gicquel, Brigitte
    Fillatreau, Simon
    Neyrolles, Olivier
    Hudrisier, Denis
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197 (06) : 801 - 813
  • [26] Surface characteristics of thermally treated titanium surfaces
    Lee, Yang-Jin
    Cui, De-Zhe
    Jeon, Ha-Ra
    Chung, Hyun-Ju
    Park, Yeong-Joon
    Kim, Ok-Su
    Kim, Young-Joon
    JOURNAL OF PERIODONTAL AND IMPLANT SCIENCE, 2012, 42 (03): : 81 - 87
  • [27] Human mesenchymal stem cells (MSC) modulate alveolar macrophage polarization in vivo and in vitro
    Krasnodembskaya, Anna
    Morrison, Thomas
    O'Kane, Cecilia
    McAuley, Daniel
    Matthay, Michael
    EUROPEAN RESPIRATORY JOURNAL, 2014, 44
  • [28] Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles
    Almeida, Ana F.
    Miranda, Margarida S.
    Vinhas, Adriana
    Goncalves, Ana, I
    Gomes, Manuela E.
    Rodrigues, Marcia T.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [29] Parishin A-loaded mesoporous silica nanoparticles modulate macrophage polarization to attenuate tendinopathy
    Zhu, Lisha
    Wang, Yu
    Jin, Shanshan
    Niu, Yuting
    Yu, Min
    Li, Zixin
    Chen, Liyuan
    Wu, Xiaolan
    Ding, Chengye
    Wu, Tianhao
    Shi, Xinmeng
    Zhang, Yixin
    Luo, Dan
    Liu, Yan
    NPJ REGENERATIVE MEDICINE, 2023, 8 (01)
  • [30] Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases
    Feifei Wang
    Hang Yao
    Xinyue Wu
    Yijian Tang
    Yang Bai
    Hui Chong
    Huan Pang
    Chinese Chemical Letters, 2024, 35 (05) : 71 - 82