Visual word spatial arrangement for image retrieval and classification

被引:73
|
作者
Penatti, Otavio A. B. [1 ]
Silva, Fernanda B. [1 ]
Valle, Eduardo [1 ,2 ]
Gouet-Brunet, Valerie [3 ,4 ]
Torres, Ricardo da S. [1 ]
机构
[1] Univ Campinas Unicamp, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas Unicamp, Sch Elect & Comp Engn FEEC, Dept Comp Engn & Ind Automat DCA, BR-13083852 Campinas, SP, Brazil
[3] Paris Est Univ, IGN SR, MATIS Lab, F-94160 St Mande, France
[4] CNAM, CEDRIC Lab, F-75141 Paris 03, France
基金
巴西圣保罗研究基金会;
关键词
Visual words; Spatial arrangement; Image retrieval; Image classification;
D O I
10.1016/j.patcog.2013.08.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:705 / 720
页数:16
相关论文
共 50 条
  • [31] Joint Image and Word Sense Discrimination for Image Retrieval
    Lucchi, Aurelien
    Weston, Jason
    COMPUTER VISION - ECCV 2012, PT I, 2012, 7572 : 130 - 143
  • [32] Content-based medical image retrieval by spatial matching of visual words
    Shamna, P.
    Govindan, V. K.
    Nazeer, K. A. Abdul
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (02) : 58 - 71
  • [33] Partial-duplicate image retrieval using spatial and visual contextual clues
    Sun, Wendi
    Wang, Tao
    Zhou, Zhili
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2020, 12 (02) : 186 - 194
  • [34] Pooling region learning of visual word for image classification using bag-of-visual-words model
    Xu, Ye
    Yu, Xiaodong
    Wang, Tian
    Xu, Zezhong
    PLOS ONE, 2020, 15 (06):
  • [35] Image Classification and Retrieval are ONE
    Xie, Lingxi
    Hong, Richang
    Zhang, Bo
    Tian, Qi
    ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 3 - 10
  • [36] X-Ray Image Classification and Retrieval Using Ensemble Combination of Visual Descriptors
    Shim, JeongHee
    Park, Kihee
    Ko, ByoungChul
    Nam, JaeYeal
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2009, 5414 : 738 - 747
  • [37] Synthesizing queries for handwritten word image retrieval
    Rodriguez-Serrano, Jose A.
    Perronnin, Florent
    PATTERN RECOGNITION, 2012, 45 (09) : 3270 - 3276
  • [38] Word image retrieval using binary features
    Zhang, B
    Srihari, SN
    Huang, C
    DOCUMENT REGOGNITION AND RETRIEVAL XI, 2004, 5296 : 45 - 53
  • [39] Fast gradual matching measure for image retrieval based on visual similarity and spatial relations
    Omhover, Jean-Francois
    Detyniecki, Marcin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2006, 21 (07) : 711 - 723
  • [40] Perceptive visual texture classification and retrieval
    Battiato, S
    Gallo, G
    Nicotra, S
    12TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2003, : 524 - 529