Visual word spatial arrangement for image retrieval and classification

被引:73
|
作者
Penatti, Otavio A. B. [1 ]
Silva, Fernanda B. [1 ]
Valle, Eduardo [1 ,2 ]
Gouet-Brunet, Valerie [3 ,4 ]
Torres, Ricardo da S. [1 ]
机构
[1] Univ Campinas Unicamp, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas Unicamp, Sch Elect & Comp Engn FEEC, Dept Comp Engn & Ind Automat DCA, BR-13083852 Campinas, SP, Brazil
[3] Paris Est Univ, IGN SR, MATIS Lab, F-94160 St Mande, France
[4] CNAM, CEDRIC Lab, F-75141 Paris 03, France
基金
巴西圣保罗研究基金会;
关键词
Visual words; Spatial arrangement; Image retrieval; Image classification;
D O I
10.1016/j.patcog.2013.08.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:705 / 720
页数:16
相关论文
共 50 条
  • [1] Spatial arrangement of color in retrieval by visual similarity
    Berretti, S
    Del Bimbo, A
    Vicario, E
    PATTERN RECOGNITION, 2002, 35 (08) : 1661 - 1674
  • [2] Image Classification Using Spatial Pyramid Coding and Visual Word Reweighting
    Zhang, Chunjie
    Liu, Jing
    Wang, Jinqiao
    Tian, Qi
    Xu, Changsheng
    Lu, Hanqing
    Ma, Songde
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 239 - +
  • [3] Fast Image Retrieval Method Based on Visual Word Tree Word
    Liang, Zhu
    2011 TENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES), 2011, : 211 - 215
  • [4] Weighting spatial arrangement of colors in content based image retrieval
    Berretti, S.
    Del Bimbo, A.
    Vicario, E.
    International Conference on Multimedia Computing and Systems -Proceedings, 1999, 1 : 845 - 849
  • [5] Weighting spatial arrangement of colors in content based image retrieval
    Berretti, S
    Del Bimbo, A
    Vicario, E
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 1, 1999, : 845 - 849
  • [6] Dictionary pruning with visual word significance for medical image retrieval
    Zhang, Fan
    Song, Yang
    Cai, Weidong
    Hauptmann, Alexander G.
    Liu, Sidong
    Pujol, Sonia
    Kikinis, Ron
    Fulham, Michael J.
    Feng, David Dagan
    Chen, Mei
    NEUROCOMPUTING, 2016, 177 : 75 - 88
  • [7] Learning salient visual word for scalable mobile image retrieval
    Yang, Xiyu
    Qian, Xueming
    Mei, Tao
    PATTERN RECOGNITION, 2015, 48 (10) : 3093 - 3101
  • [8] An Enhancement to the Spatial Pyramid Matching for Image Classification and Retrieval
    Karmakar, Priyabrata
    Teng, Shyh Wei
    Lu, Guojun
    Zhang, Dengsheng
    IEEE ACCESS, 2020, 8 (08): : 22463 - 22472
  • [9] Spatial encoding of visual words for image classification
    Liu, Dong
    Wang, Shengsheng
    Porikli, Fatih
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (03)
  • [10] Learning Visual Word Patterns Using BoVW Model for Image Retrieval
    Arulmozhi, P.
    Abirami, S.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM 2016, 2017, 556 : 489 - 498