On complete pure-injectivity in locally finitely presented categories

被引:0
|
作者
Berktas, Mustafa Kemal [1 ]
Crivei, Septimiu [2 ]
机构
[1] Usak Univ, Dept Math, Sci & Art Fac, 1 Eylul Campus, TR-64200 Usak, Turkey
[2] Babes Bolyai Univ, Fac Math & Comp Sci, Str Mihail Kogalniceanu 1, Cluj Napoca 400084, Romania
关键词
Locally finitely presented category; Krull-Schmidt category; indecomposable decomposition; (completely) pure-infective object; semiperfect ring; semisimple ring; Osofsky theorem; MODULES; RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a locally finitely presented additive category, and let E be a finitely presented pure-injective object of C. We prove that E has an indecomposable decomposition if and only if every pure epimorphic image of E is pure-injective if and only if the endomorphism ring of E is semiperfect. This extends a module-theoretic result which generalises the classical Osofsky Theorem.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 46 条