Phenomenological, epistemological and hermeneutic study of non-commutative geometry

被引:0
|
作者
Harada, Masaki [1 ]
机构
[1] Sendai Shirayuri Womens Coll, Izumi Ku, Sendai, Miyagi 9813017, Japan
关键词
D O I
暂无
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
引用
收藏
页码:293 / 324
页数:32
相关论文
共 50 条
  • [41] Non-commutative geometry and symplectic field theory
    Amorim, R. G. G.
    Fernandes, M. C. B.
    Khanna, F. C.
    Santana, A. E.
    Vianna, J. D. M.
    PHYSICS LETTERS A, 2007, 361 (06) : 464 - 471
  • [42] D-branes and non-commutative geometry
    Pawelczyk, J
    ACTA PHYSICA POLONICA B, 2002, 33 (09): : 2489 - 2500
  • [43] Non-commutative geometry, multiscalars, and the symbol map
    Reuter, M
    NUCLEAR PHYSICS B, 1996, : 333 - 337
  • [44] Supersymmetric Quantum Theory and Non-Commutative Geometry
    J. Fröhlich
    O. Grandjean
    A. Recknagel
    Communications in Mathematical Physics, 1999, 203 : 119 - 184
  • [45] D-branes and non-commutative geometry
    Acta Physica Polonica, Series B., 2002, 33 (09): : 2489 - 2500
  • [46] Non-commutative Geometry and Applications to Physical Systems
    Zaim, Slimane
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 313 - 323
  • [47] From index theory to non-commutative geometry
    Teleman, N
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 787 - 844
  • [48] Quantum (non-commutative) toric geometry: Foundations
    Katzarkov, Ludmil
    Lupercio, Ernesto
    Meersseman, Laurent
    Verjovsky, Alberto
    ADVANCES IN MATHEMATICS, 2021, 391
  • [49] String vacua, supersymmetry and non-commutative geometry
    Frohlich, JM
    Grandjean, O
    Recknagel, A
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 552 - 552
  • [50] Tensor triangular geometry of non-commutative motives
    Dell'Ambrogio, Ivo
    Tabuada, Goncalo
    ADVANCES IN MATHEMATICS, 2012, 229 (02) : 1329 - 1357