Equidistribution of toral eigenfunctions along hypersurfaces

被引:2
|
作者
Hezari, Hamid [1 ]
Riviere, Gabriel [2 ]
机构
[1] UC Irvine, Dept Math, Irvine, CA 92617 USA
[2] Univ Nantes, Lab Math Jean Leray, UMR CNRS 6629, 2 Rue Houssiniere,BP92208, F-44322 Nantes 3, France
关键词
Laplace eigenfunctions; L-2-restriction estimates; harmonic analysis on the torus; quantum ergodicity restriction; lattice points; QUANTUM ERGODICITY; MATRIX-ELEMENTS; RESTRICTION; TRANSFORMS; THEOREM;
D O I
10.4171/RMI/1135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new quantum variance estimate for toral eigenfunctions. As an application, we show that, given any orthonormal basis of toral eigenfunctions and any smooth embedded hypersurface with non-vanishing principal curvatures, there exists a density one subsequence of eigenfunctions that equidistribute along the hypersurface. This is an analogue of the Quantum Ergodic Restriction theorems in the case of the flat torus, which in particular verifies the Bourgain-Rudnick's conjecture on L-2-restriction estimates for a density one subsequence of eigenfunctions in any dimension. Using our quantum variance estimates, we also obtain equidistribution of eigenfunctions against measures whose supports have Fourier dimension larger than d - 2. In the end, we also describe a few quantitative results specific to dimension 2.
引用
收藏
页码:435 / 454
页数:20
相关论文
共 50 条
  • [21] Equidistribution of minimal hypersurfaces for generic metrics
    Fernando C. Marques
    André Neves
    Antoine Song
    Inventiones mathematicae, 2019, 216 : 421 - 443
  • [22] Averages of Eigenfunctions Over Hypersurfaces
    Yaiza Canzani
    Jeffrey Galkowski
    John A. Toth
    Communications in Mathematical Physics, 2018, 360 : 619 - 637
  • [23] The defect of toral Laplace eigenfunctions and arithmetic random waves
    Kurlberg, Par
    Wigman, Igor
    Yesha, Nadav
    NONLINEARITY, 2021, 34 (09) : 6651 - 6684
  • [24] Averages of Eigenfunctions Over Hypersurfaces
    Canzani, Yaiza
    Galkowski, Jeffrey
    Toth, John A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (02) : 619 - 637
  • [25] Asymptotic Nodal Length and Log-Integrability of Toral Eigenfunctions
    Andrea Sartori
    Communications in Mathematical Physics, 2023, 402 : 1513 - 1549
  • [26] Planck-scale number of nodal domains for toral eigenfunctions
    Sartori, Andrea
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [27] Asymptotic Nodal Length and Log-Integrability of Toral Eigenfunctions
    Sartori, Andrea
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 1513 - 1549
  • [28] Egorov Theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps
    De Bievre, S
    Esposti, MD
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1998, 69 (01): : 1 - 30
  • [29] Mass distribution for toral eigenfunctions via Bourgain's de-randomization
    Sartori, Andrea
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01): : 1 - 20
  • [30] Equidistribution of Kronecker sequences along closed horocycles
    Jens Marklof
    Andreas Strömbergsson
    Geometric & Functional Analysis GAFA, 2003, 13 : 1239 - 1280