On Feature Selection in Environmental Sound Recognition

被引:0
|
作者
Mitrovic, Dalibor [1 ]
Zeppelzauer, Matthias [1 ]
Eidenberger, Horst [1 ]
机构
[1] Vienna Univ Technol, Inst Software Technol & Interact Syst, A-1040 Vienna, Austria
来源
关键词
Feature Selection; Statistical Data Analysis; Environtmental Sound Recognition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given a broad set of content-based audio features, we employ principal component analysis for the composition of an optimal feature set for environmental sounds. We select features based on quantitative data analysis (factor analysis) and conduct retrieval experiments to evaluate the quality of the feature combinations. Retrieval results show that statistical data analysis gives useful hints for feature selection. The experiments show the importance of feature selection in environmental sound recognition.
引用
收藏
页码:201 / 204
页数:4
相关论文
共 50 条
  • [41] Instant learning sound sensor: Flexible environmental sound recognition system
    Negishi, Yuya
    Kawaguchi, Nobuo
    INSS 07: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON NETWORKED SENSING SYSTEMS, 2007, : 305 - 305
  • [42] Finger Vein Recognition with Personalized Feature Selection
    Xi, Xiaoming
    Yang, Gongping
    Yin, Yilong
    Meng, Xianjing
    SENSORS, 2013, 13 (09) : 11243 - 11259
  • [43] Unsupervised Spectral Feature Selection for Face Recognition
    Zhang, Zhihong
    Hancock, Edwin R.
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1787 - 1790
  • [44] Fast Feature Selection for Handwritten Digit Recognition
    Chouaib, Hassan
    Cloppet, Florence
    Vincent, Nicole
    13TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR 2012), 2012, : 485 - 490
  • [45] Integration of GAN Environmental Sound Filtering and the CNN Sound Recognition System
    Ho, Pin-Chieh
    Morsalin, S. M. Salahuddin
    Wang, Szu-Hong
    Sheu, Ming-Hwa
    4TH INTERDISCIPLINARY CONFERENCE ON ELECTRICS AND COMPUTER, INTCEC 2024, 2024,
  • [46] Deep Feature Learning and Selection for Activity Recognition
    Mohammad, Yasser
    Matsumoto, Kazunori
    Hoashi, Keiichiro
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 930 - 939
  • [47] An ensemble feature selection technique for cancer recognition
    Xu, Jiucheng
    Sun, Lin
    Gao, Yunpeng
    Xu, Tianhe
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (01) : 1001 - 1008
  • [49] Feature selection in the recognition of handwritten Chinese characters
    Leung, CH
    Sze, L
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1997, 10 (05) : 495 - 502
  • [50] ECG signal feature selection for emotion recognition
    Xun, Lichen
    Zheng, Gang
    Xun, L. (xun0221@gmail.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11): : 1363 - 1370