Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation

被引:61
|
作者
Petrova, Olga E. [1 ]
Schurr, Jill R. [2 ]
Schurr, Michael J. [3 ]
Sauer, Karin [1 ]
机构
[1] SUNY Binghamton, Dept Biol Sci, Binghamton, NY 13902 USA
[2] Affymetrix Inc, Santa Clara, CA 95051 USA
[3] Univ Colorado, Sch Med, Dept Microbiol, Aurora, CO 80045 USA
基金
美国国家卫生研究院;
关键词
PNEUMONIAE BIOFILM RESISTANCE; UNIVERSAL STRESS-PROTEIN; CYSTIC-FIBROSIS AIRWAYS; ESCHERICHIA-COLI; GENE-EXPRESSION; DNA RELEASE; LIQUID FLOW; PORPHYROMONAS-GINGIVALIS; PARACOCCUS-DENITRIFICANS; ANTIBIOTIC PENETRATION;
D O I
10.1111/mmi.12018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that microcolony formation is associated with stressful, oxygen-limiting but electron-rich conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation, while addition of pyruvate partly restored microcolony formation in mifR mutant biofilms. In contrast, expression of ldhA in mifR:: Mar fully restored microcolony formation by this mutant strain. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation of the P. aeruginosa biofilm environment.
引用
收藏
页码:819 / 835
页数:17
相关论文
共 50 条
  • [21] Genomics of Adaptation during Experimental Evolution of the Opportunistic Pathogen Pseudomonas aeruginosa
    Wong, Alex
    Rodrigue, Nicolas
    Kassen, Rees
    PLOS GENETICS, 2012, 8 (09):
  • [22] Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen
    Imperi, Francesco
    Ciccosanti, Fabiola
    Perdomo, Ariel Basulto
    Tiburzi, Federica
    Mancone, Carmine
    Alonzi, Tonino
    Ascenzi, Paolo
    Piacentini, Mauro
    Visca, Paolo
    Fimia, Gian Maria
    PROTEOMICS, 2009, 9 (07) : 1901 - 1915
  • [23] Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa
    Curran, B
    Jonas, D
    Grundmann, H
    Pitt, T
    Dowson, CG
    JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (12) : 5644 - 5649
  • [24] What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated
    Valot, Benoit
    Guyeux, Christophe
    Rolland, Julien Yves
    Mazouzi, Kamel
    Bertrand, Xavier
    Hocquet, Didier
    PLOS ONE, 2015, 10 (05):
  • [25] Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa
    Saraswathi, Padmanabhan
    Beuerman, Roger W.
    OCULAR SURFACE, 2015, 13 (04): : 331 - 345
  • [26] Tobramycin and Amikacin Delay Adhesion and Microcolony Formation in Pseudomonas aeruginosa Cystic Fibrosis Isolates
    Olivares, Elodie
    Badel-Berchoux, Stephanie
    Provot, Christian
    Jaulhac, Benoit
    Prevost, Gilles
    Bernardi, Thierry
    Jehl, Francois
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [27] Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen
    Stover, CK
    Pham, XQ
    Erwin, AL
    Mizoguchi, SD
    Warrener, P
    Hickey, MJ
    Brinkman, FSL
    Hufnagle, WO
    Kowalik, DJ
    Lagrou, M
    Garber, RL
    Goltry, L
    Tolentino, E
    Westbrock-Wadman, S
    Yuan, Y
    Brody, LL
    Coulter, SN
    Folger, KR
    Kas, A
    Larbig, K
    Lim, R
    Smith, K
    Spencer, D
    Wong, GKS
    Wu, Z
    Paulsen, IT
    Reizer, J
    Saier, MH
    Hancock, REW
    Lory, S
    Olson, MV
    NATURE, 2000, 406 (6799) : 959 - 964
  • [28] The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa
    Lear, Luke
    Hesse, Elze
    Newsome, Laura
    Gaze, William
    Buckling, Angus
    Vos, Michiel
    EVOLUTIONARY APPLICATIONS, 2023, 16 (07): : 1377 - 1389
  • [29] Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis
    Plotnikova, JM
    Rahme, LG
    Ausubel, FM
    PLANT PHYSIOLOGY, 2000, 124 (04) : 1766 - 1774
  • [30] Genome-Wide Patterns of Recombination in the Opportunistic Human Pathogen Pseudomonas aeruginosa
    Dettman, Jeremy R.
    Rodrigue, Nicolas
    Kassen, Rees
    GENOME BIOLOGY AND EVOLUTION, 2015, 7 (01): : 18 - 34