Expanding materials science with universal many-body graph neural networks

被引:2
|
作者
Pan, Jie
机构
来源
NATURE COMPUTATIONAL SCIENCE | 2022年 / 2卷 / 11期
关键词
D O I
10.1038/s43588-022-00360-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A universal interatomic potential for the periodic table has been developed by combining graph neural networks with three-body interactions. This M3GNet potential can perform structural relaxations, dynamic simulations and property predictions for materials across a diverse chemical space.
引用
收藏
页码:703 / 704
页数:2
相关论文
共 50 条
  • [41] Neural network representations of quantum many-body states
    Ying Yang
    HuaiXin Cao
    ZhanJun Zhang
    Science China(Physics,Mechanics & Astronomy), 2020, (01) : 59 - 73
  • [42] Three decades of many-body potentials in materials research
    Sinnott, Susan B.
    Brenner, Donald W.
    MRS BULLETIN, 2012, 37 (05) : 469 - 473
  • [43] Terahertz control of many-body dynamics in quantum materials
    Yang, Chia-Jung
    Li, Jingwen
    Fiebig, Manfred
    Pal, Shovon
    NATURE REVIEWS MATERIALS, 2023, 8 (08) : 518 - 532
  • [44] Three decades of many-body potentials in materials research
    Susan B. Sinnott
    Donald W. Brenner
    MRS Bulletin, 2012, 37 : 469 - 473
  • [45] Terahertz control of many-body dynamics in quantum materials
    Chia-Jung Yang
    Jingwen Li
    Manfred Fiebig
    Shovon Pal
    Nature Reviews Materials, 2023, 8 : 518 - 532
  • [46] Pairwise tomography networks for many-body quantum systems
    Garcia-Perez, Guillermo
    Rossi, Matteo A. C.
    Sokolov, Boris
    Borrelli, Elsi-Mari
    Maniscalco, Sabrina
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [47] Many-body control with reinforcement learning and tensor networks
    Ying Lu
    Shi-Ju Ran
    Nature Machine Intelligence, 2023, 5 : 1058 - 1059
  • [48] Many-body control with reinforcement learning and tensor networks
    Lu, Ying
    Ran, Shi-Ju
    NATURE MACHINE INTELLIGENCE, 2023, 5 (10) : 1058 - 1059
  • [49] Universal Prompt Tuning for Graph Neural Networks
    Fang, Taoran
    Zhang, Yunchao
    Yang, Yang
    Wang, Chunping
    Chen, Lei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [50] Universal Readout for Graph Convolutional Neural Networks
    Navarin, Nicolo
    Dinh Van Tran
    Sperduti, Alessandro
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,