Expanding materials science with universal many-body graph neural networks

被引:2
|
作者
Pan, Jie
机构
来源
NATURE COMPUTATIONAL SCIENCE | 2022年 / 2卷 / 11期
关键词
D O I
10.1038/s43588-022-00360-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A universal interatomic potential for the periodic table has been developed by combining graph neural networks with three-body interactions. This M3GNet potential can perform structural relaxations, dynamic simulations and property predictions for materials across a diverse chemical space.
引用
收藏
页码:703 / 704
页数:2
相关论文
共 50 条
  • [1] Expanding materials science with universal many-body graph neural networks
    Nature Computational Science, 2022, 2 : 703 - 704
  • [2] Many-Body expansion combined with neural networks
    Yao, Kun
    Herr, John
    Parkhill, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [3] The many-body expansion combined with neural networks
    Yao, Kun
    Herr, John E.
    Parkhill, John
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (01):
  • [4] Probing many-body localization with neural networks
    Schindler, Frank
    Regnault, Nicolas
    Neupert, Titus
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [5] Graph neural networks for materials science and chemistry
    Patrick Reiser
    Marlen Neubert
    André Eberhard
    Luca Torresi
    Chen Zhou
    Chen Shao
    Houssam Metni
    Clint van Hoesel
    Henrik Schopmans
    Timo Sommer
    Pascal Friederich
    Communications Materials, 3
  • [6] Graph neural networks for materials science and chemistry
    Reiser, Patrick
    Neubert, Marlen
    Eberhard, Andre
    Torresi, Luca
    Zhou, Chen
    Shao, Chen
    Metni, Houssam
    van Hoesel, Clint
    Schopmans, Henrik
    Sommer, Timo
    Friederich, Pascal
    COMMUNICATIONS MATERIALS, 2022, 3 (01)
  • [7] Predicting Quantum Many-Body Dynamics with Transferable Neural Networks
    张泽旺
    杨硕
    吴亦航
    刘晨曦
    韩翊民
    ChingHua Lee
    孙政
    李光杰
    张笑
    Chinese Physics Letters, 2020, 37 (01) : 140 - 153
  • [8] Predicting Quantum Many-Body Dynamics with Transferable Neural Networks
    Zhang, Ze-Wang
    Yang, Shuo
    Wu, Yi-Hang
    Liu, Chen-Xi
    Han, Yi-Min
    Lee, Ching-Hua
    Sun, Zheng
    Li, Guang-Jie
    Zhang, Xiao
    CHINESE PHYSICS LETTERS, 2020, 37 (01)
  • [9] Quantum neural networks to simulate many-body quantum systems
    Gardas, Bartlomiej
    Rams, Marek M.
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [10] Solving the quantum many-body problem with artificial neural networks
    Carleo, Giuseppe
    Troyer, Matthias
    SCIENCE, 2017, 355 (6325) : 602 - 605