Polynomial time approximation scheme for Symmetric Rectilinear Steiner Arborescence problem

被引:3
|
作者
Cheng, XZ [1 ]
DasGupta, B
Lu, B
机构
[1] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
[2] Rutgers State Univ, Camden, NJ 08102 USA
关键词
PTAS; Rectilinear Steiner Arborescence; Symmetric Rectilinear Steiner Arborescence; guillotine; approximation algorithm;
D O I
10.1023/A:1012730702524
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Symmetric Rectilinear Steiner Arborescence (SRStA) problem is defined as follows: given a set of terminals in the positive quadrant of the plane, connect them using horizontal and vertical lines such that each terminal can be reached from the origin via a y-monotone path and the total length of all the line segments is the minimum possible. Finding an SRStA has applications in VLSI design, in data structures used in some optimization algorithms and in dynamic server problems. In this paper, we provide a polynomial time approximation scheme for the SRStA problem, improving the previous best approximation ratio of 3 for this problem.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [11] Fast optimal algorithms for the minimum rectilinear Steiner arborescence problem
    Leung, KS
    Cong, J
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1568 - 1571
  • [12] A Polynomial Time Approximation Scheme for the Grade of Service Steiner Minimum Tree Problem
    Joonmo Kim
    Mihaela Cardei
    Ionut Cardei
    Xiaohua Jia
    Journal of Global Optimization, 2002, 24 : 437 - 448
  • [13] A polynomial time approximation scheme for the Grade of Service Steiner Minimum Tree problem
    Kim, J
    Cardei, M
    Cardei, I
    Jia, XH
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (04) : 437 - 448
  • [14] A polynomial-time approximation scheme for Euclidean Steiner forest
    Borradaile, Glencora
    Klein, Philip N.
    Mathieu, Claire
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 115 - +
  • [15] A Polynomial-Time Approximation Scheme for Euclidean Steiner Forest
    Borradaile, Glencora
    Klein, Philip N.
    Mathieu, Claire
    ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (03)
  • [16] Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems
    Fomin, Fedor, V
    Lokshtanov, Daniel
    Kolay, Sudeshna
    Panolan, Fahad
    Saurabh, Saket
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [17] Faster approximation algorithms for the rectilinear Steiner tree problem
    Fossmeier, U
    Kaufmann, M
    Zelikovsky, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (01) : 93 - 109
  • [18] Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem
    U. Fößmeier
    M. Kaufmann
    A. Zelikovsky
    Discrete & Computational Geometry, 1997, 18 : 93 - 109
  • [19] Approximation algorithms for the rectilinear Steiner tree problem with obstacles
    Fujimoto, M
    Takafuji, D
    Watanabe, T
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1362 - 1365
  • [20] A Polynomial-Time Approximation Scheme for Steiner Tree in Planar Graphs
    Borradaile, Glencora
    Kenyon-Mathieu, Claire
    Klein, Philip
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1285 - 1294