Polynomial time approximation scheme for Symmetric Rectilinear Steiner Arborescence problem

被引:3
|
作者
Cheng, XZ [1 ]
DasGupta, B
Lu, B
机构
[1] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
[2] Rutgers State Univ, Camden, NJ 08102 USA
关键词
PTAS; Rectilinear Steiner Arborescence; Symmetric Rectilinear Steiner Arborescence; guillotine; approximation algorithm;
D O I
10.1023/A:1012730702524
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Symmetric Rectilinear Steiner Arborescence (SRStA) problem is defined as follows: given a set of terminals in the positive quadrant of the plane, connect them using horizontal and vertical lines such that each terminal can be reached from the origin via a y-monotone path and the total length of all the line segments is the minimum possible. Finding an SRStA has applications in VLSI design, in data structures used in some optimization algorithms and in dynamic server problems. In this paper, we provide a polynomial time approximation scheme for the SRStA problem, improving the previous best approximation ratio of 3 for this problem.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [1] Polynomial Time Approximation Scheme for Symmetric Rectilinear Steiner Arborescence Problem
    Xiuzhen Cheng
    Bhaskar DasGupta
    Bing Lu
    Journal of Global Optimization, 2001, 21 : 385 - 396
  • [2] Polynomial Time Approximation Scheme for the Rectilinear Steiner Arborescence Problem
    Bing Lu
    Lu Ruan
    Journal of Combinatorial Optimization, 2000, 4 : 357 - 363
  • [3] Polynomial time approximation scheme for the rectilinear Steiner arborescence problem
    Lu, B
    Ruan, L
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (03) : 357 - 363
  • [4] THE RECTILINEAR STEINER ARBORESCENCE PROBLEM
    RAO, SK
    SADAYAPPAN, P
    HWANG, FK
    SHOR, PW
    ALGORITHMICA, 1992, 7 (2-3) : 277 - 288
  • [5] Optimal Competitiveness for the Rectilinear Steiner Arborescence Problem
    Kantor, Erez
    Kutten, Shay
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2015, 9135 : 675 - 687
  • [6] New approximations for the rectilinear steiner arborescence problem
    Ramnath, S
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2003, 22 (07) : 859 - 869
  • [7] Optimal Competitiveness for Symmetric Rectilinear Steiner Arborescence and Related Problems
    Kantor, Erez
    Kutten, Shay
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT II, 2014, 8573 : 520 - 531
  • [8] A polynomial time approximation scheme for rectilinear Steiner minimum tree construction in the presence of obstacles
    Jian, L
    Ying, Z
    Shragowitz, E
    Karypis, G
    ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 781 - 784
  • [9] The Rectilinear Steiner Arborescence problem is NP-complete
    Shi, WP
    Su, C
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 780 - 787
  • [10] The rectilinear Steiner arborescence problem is NP-complete
    Shi, WP
    Su, C
    SIAM JOURNAL ON COMPUTING, 2006, 35 (03) : 729 - 740