What Can Text Mining Tell Us About Lithium-Ion Battery Researchers' Habits?

被引:8
|
作者
El-Bousiydy, Hassna
Lombardo, Teo
Primo, Emiliano N.
Duquesnoy, Marc
Morcrette, Mathieu
Johansson, Patrik
Simon, Patrice
Grimaud, Alexis
Franco, Alejandro A.
机构
[1] Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, Amiens Cedex 1
[2] ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, Amiens Cedex 1
[3] Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie 15, rue Baudelocque, Amiens Cedex 1
[4] Department of Physics, Chalmers University of Technology, Göteborg
[5] CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, Toulouse cedex 9
[6] UMR CNRS 8260 “Chimie du Solide et Energie”, Collège de France, 11 Place Marcelin Berthelot, Paris Cedex 05
[7] Sorbonne Universités - UPMC Univ Paris 06, 4 Place Jussieu, Paris
[8] Institut Universitaire de France, 103 boulevard Saint Michel, Paris
基金
欧盟地平线“2020”;
关键词
artificial intelligence; battery; reproducibility crisis; standards; text mining;
D O I
10.1002/batt.202100076
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Artificial Intelligence (AI) has the promise of providing a paradigm shift in battery R&D by significantly accelerating the discovery and optimization of materials, interfaces, phenomena, and processes. However, the efficiency of any AI approach ultimately relies on rapid access to high-quality and interpretable large datasets. Scientific publications contain a tremendous wealth of relevant data and these can possibly, but not certainly, be used to develop reliable AI algorithms useful for battery R&D. To address this, we present here a text mining study wherein we unravel lithium-ion battery researchers' habits when reporting results, reason on how these habits link to issues of lacking reproducibility and discuss the remaining challenges to be tackled in order to develop a more credible and impactful AI for battery R&D.
引用
收藏
页码:689 / 689
页数:1
相关论文
共 50 条