State of Charge Estimation for Lithium-Ion Batteries Based on TCN-LSTM Neural Networks

被引:42
|
作者
Hu, Chunsheng [1 ]
Cheng, Fangjuan [1 ]
Ma, Liang [1 ]
Li, Bohao [1 ]
机构
[1] Ningxia Univ, Sch Mech Engn, Yinchuan 750000, Ningxia, Peoples R China
关键词
OPEN-CIRCUIT VOLTAGE; SHORT-TERM-MEMORY; KALMAN FILTER; PREDICTION; MODEL;
D O I
10.1149/1945-7111/ac5cf2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Accurately estimating the state of charge (SOC) of lithium-ion batteries is critical for developing more reliable and efficient operation of electric vehicles. However, the commonly used models cannot simultaneously extract effective spatial and temporal features from the original data, leading to an inefficient SOC estimation. This paper proposes a novel neural network method for accurate and robust battery SOC estimation, which incorporates the temporal convolutional network (TCN) and the long short-term memory (LSTM), namely TCN-LSTM model. Specifically, the TCN is employed to extract more advanced spatial features among multivariate variables, and the LSTM captures long-term dependencies from time-series data and maps battery temporal information into current SOC and historical inputs. The proposed model performs well in various estimation conditions. The average value of mean absolute error, root mean square error, and maximum error of SOC estimation achieve 0.48%, 0.60%, and 2.3% at multiple temperature conditions, respectively, and reach 0.70%, 0.81%, and 2.7% for a different battery, respectively. In addition, the proposed method has better accuracy than the LSTM or TCN used independently and the CNN-LSTM network. The computational burden with varying length of input is also investigated. In summary, experiment results show that the proposed method has excellent generalization and robustness.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Nonlinear adaptive estimation of the state of charge for Lithium-ion batteries
    Wang, Yebin
    Fang, Huazhen
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4405 - 4410
  • [42] State of charge estimation for lithium-ion batteries: An adaptive approach
    Fang, Huazhen
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    CONTROL ENGINEERING PRACTICE, 2014, 25 : 45 - 54
  • [43] State of charge estimation for lithium-ion pouch batteries based on stress measurement
    Dai, Haifeng
    Yu, Chenchen
    Wei, Xuezhe
    Sun, Zechang
    ENERGY, 2017, 129 : 16 - 27
  • [44] State-of-charge estimation of lithium-ion batteries based on ultrasonic detection
    Cai, Zhiduan
    Pan, Tianle
    Jiang, Haoye
    Li, Zuxin
    Wang, Yulong
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [45] Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries
    Zou, Zhongyue
    Xu, Jun
    Mi, Chris
    Cao, Binggang
    Chen, Zheng
    ENERGIES, 2014, 7 (08) : 5065 - 5082
  • [46] State-of-Charge Estimation of Lithium-Ion Batteries Based on EKF Integrated With PSO-LSTM for Electric Vehicles
    Xu, Hequan
    Xu, Qiang
    Duanmu, Fanchang
    Shen, Jingyi
    Jin, Ling
    Gou, Bin
    Wu, Fei
    Zhang, Wei
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 2311 - 2321
  • [47] Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network
    Hu, Panpan
    Tang, W. F.
    Li, C. H.
    Mak, Shu-Lun
    Li, C. Y.
    Lee, C. C.
    ENERGIES, 2023, 16 (14)
  • [48] Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries
    Zhang, Dengfeng
    Li, Weichen
    Han, Xiaodong
    Lu, Baochun
    Zhang, Quanling
    Bo, Cuimei
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [49] Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries
    Hofmann, Tobias
    Hamar, Jacob
    Rogge, Marcel
    Zoerr, Christoph
    Erhard, Simon
    Philipp Schmidt, Jan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [50] STATE OF HEALTH PREDICTION OF LITHIUM-ION BATTERIES BASED ON TCN-TRANSFORMER
    Li, Jiayuan
    Xu, Dezhi
    Pan, Tinglong
    Jiang, Dongnian
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 17 - 35