Implementation Methodologies of Deep Learning-Based Signal Detection for Conventional MIMO Transmitters

被引:62
|
作者
Baek, Myung-Sun [1 ]
Kwak, Sangwoon [1 ]
Jung, Jun-Young [1 ]
Kim, Heung Mook [1 ]
Choi, Dong-Joon [1 ]
机构
[1] Elect & Telecommun Res Inst, Media Transmiss Res Grp, Daejeon 305350, South Korea
关键词
Deep learning; DNN; CNN; RNN; communication systems; MIMO; signal detection; BLIND CHANNEL ESTIMATION; OPTIMIZATION; PERFORMANCE; RECEIVER; SCHEME;
D O I
10.1109/TBC.2019.2891051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, simple methodologies of deep learning application to conventional multiple-input multiple-output (MIMO) communication systems are presented. The deep learning technologies with deep neural network (DNN) structure, emerging technologies in various engineering areas, have been actively investigated in the field of communication engineering as well. In the physical layer of conventional communication systems, there are practical challenges of application of DNN: calculating complex number in DNN and designing proper DNN structure for a specific communication system model. This paper proposes and verifies simple solutions for the difficulty. First, we apply a basic DNN structure for signal detection of one-tap MIMO channel. Second, convolutional neural network (CNN) and recurrent neural network (RNN) structures are presented for MIMO system with multipath fading channel. Our DNN structure for one-tap MIMO channel can achieve the optimal maximum likelihood detection performance, and furthermore, our CNN and RNN structures for multipath fading channel can detect the transmitted signal properly.
引用
收藏
页码:636 / 642
页数:7
相关论文
共 50 条
  • [31] Deep Learning-Based Attention Mechanism for Automatic Drowsiness Detection Using EEG Signal
    Divvala, Chiranjevulu
    Mishra, Madhusudhan
    IEEE SENSORS LETTERS, 2024, 8 (03) : 1 - 4
  • [32] Impact of deep learning-based image super-resolution on binary signal detection
    Zhang, Xiaohui
    Kelkar, Varun A.
    Granstedt, Jason
    Li, Hua
    Anastasio, Mark A.
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (06)
  • [33] Deep Learning-Based Detection Algorithm for the Multi-User MIMO-NOMA System
    Wang, Qixing
    Zhou, Ting
    Zhang, Hanzhong
    Hu, Honglin
    Pignaton de Freitas, Edison
    Feng, Songlin
    ELECTRONICS, 2024, 13 (02)
  • [34] Deep Learning-Based Approach for Low Probability of Intercept Radar Signal Detection and Classification
    Ghadimi, G.
    Norouzi, Y.
    Bayderkhani, R.
    Nayebi, M. M.
    Karbasi, S. M.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (10) : 1179 - 1191
  • [35] Deep Learning-Based Signal Detection with Soft Information for MISO-NOMA Systems
    Zhu, Pan
    Wang, Xiaoming
    Jia, Xia
    Xu, Youyun
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [36] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [37] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [38] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [39] A Survey on Deep Learning-Based Traffic Signal Control
    Si, Qinbatu
    Yang, Lirun
    Bao, Jingjing
    Lin, Yangfei
    Bao, Wugedele
    Wu, Celimuge
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025, 34 (02)
  • [40] Deep Learning-Based Limited Feedback Designs for MIMO Systems
    Jang, Jeonghyeon
    Lee, Hoon
    Hwang, Sangwon
    Ren, Haibao
    Lee, Inkyu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 558 - 561