Anisotropic compact sphere with Van der Waals equation of state

被引:41
|
作者
Thirukkanesh, S. [1 ]
Ragel, F. C. [2 ]
机构
[1] Eastern Univ, Dept Math, Chenkalady, Sri Lanka
[2] Eastern Univ, Dept Phys, Chenkalady, Sri Lanka
关键词
Einstein field equations; Van der Waals EoS; Quark star; STRANGE STARS; MODEL; DECONFINEMENT; DENSITY;
D O I
10.1007/s10509-014-1883-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate a system of field equations with Van der Waals type equation of state to the Einstein field equations in spherically symmetric static spacetime to describe anisotropic compact matter and obtain a new class of solution by choosing one of the gravitational potentials. The generated model is shown to be physically admissible by satisfying the major physical conditions such as regularity of gravitational potential at the origin, positive definiteness of energy density and the radial pressure at the origin, vanishing of radial pressure at some finite radius, and monotonic decrease of the energy density and the radial pressure with increasing radius. The model also satisfy the casuality condition and match smoothly with the Schwarzschild exterior line element at the stellar boundary. We believe that the solution found through this work may assist more detailed studies of relativistic compact stellar bodies at the extremes of densities.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 50 条
  • [41] Excluded Volume: A Historical Enigma of the van der Waals Equation of State
    Rusanov, Anatoly I.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (10): : 4176 - 4182
  • [42] Anisotropic model observing pulsars from Neutron Star Interior Composition with modified Van der Waals equation of state
    Mardan, S. A.
    Khalid, A.
    Manzoor, Rubab
    Riaz, Muhammad Bilal
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (10):
  • [43] The van der Waals equation of inert gas
    Neusser, E
    PHYSIKALISCHE ZEITSCHRIFT, 1932, 33 : 76 - 81
  • [44] A note on van der Waals' equation.
    Hilton, H
    PHILOSOPHICAL MAGAZINE, 1901, 1 (1-6) : 579 - 589
  • [45] Mathematical analysis of the van der Waals equation
    Prodanov, Emil M.
    PHYSICA B-CONDENSED MATTER, 2022, 640
  • [46] Intercalate Superconductivity and van der Waals Equation
    Benjamin, Shermane M.
    ACS MATERIALS AU, 2022, 2 (04): : 436 - 439
  • [47] Constitutive equation of van der Waals I
    Jablczynski, K
    PHYSIKALISCHE ZEITSCHRIFT, 1932, 33 : 536 - 543
  • [48] Mathematical analysis of the van der Waals equation
    Prodanov, Emil M.
    PHYSICA B-CONDENSED MATTER, 2022, 640
  • [49] A modification of van der Waals' equation.
    Boynton, WP
    Bramley, A
    PHYSICAL REVIEW, 1922, 20 (01): : 46 - 48
  • [50] Van der Waals equation in a nonextensive scenario
    Martínez, S
    Pennini, F
    Plastino, A
    PHYSICS LETTERS A, 2001, 282 (4-5) : 263 - 268