Bijective enumerations for symmetrized poly-Bernoulli polynomials

被引:0
|
作者
Hirose, Minoru [1 ]
Matsusaka, Toshiki [1 ]
Sekigawa, Ryutaro [2 ]
Yoshizaki, Hyuga [2 ]
机构
[1] Nagoya Univ, Inst Adv Res, Nagoya, Aichi, Japan
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Chiba, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 03期
关键词
D O I
10.37236/abcd
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, B??nyi and the second author introduced two combinatorial interpre-tations for symmetrized poly-Bernoulli polynomials. In the present study, we con-struct bijections between these combinatorial objects. We also define various com-binatorial polynomials and prove that all of these polynomials coincide with sym-metrized poly-Bernoulli polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] On the type 2 poly-Bernoulli polynomials associated with umbral calculus
    Kim, Taekyun
    San Kim, Dae
    Dolgy, Dmitry, V
    Park, Jin-Woo
    OPEN MATHEMATICS, 2021, 19 (01): : 878 - 887
  • [42] Representations of modified type 2 degenerate poly-Bernoulli polynomials
    Kwon, Jongkyum
    Wongsason, Patcharee
    Kim, Yunjae
    Kim, Dojin
    AIMS MATHEMATICS, 2022, 7 (06): : 11443 - 11463
  • [43] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Taekyun Kim
    Dansan Kim
    Han-Young Kim
    Hyunseok Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2020
  • [44] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    Dolgy, Dmitry V.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [45] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Toufik Mansour
    Dmitry V Dolgy
    Advances in Difference Equations, 2015
  • [46] A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials
    Kim, Taekyun
    Khan, Waseem A.
    Sharma, Sunil Kumar
    Ghayasuddin, Mohd
    SYMMETRY-BASEL, 2020, 12 (04):
  • [47] Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter
    Khan, Waseem A.
    Khan, Idrees A.
    Ali, Musharraf
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 3 - 15
  • [48] Some Explicit Formulas of Hurwitz Lerch type Poly-Cauchy Polynomials and Poly-Bernoulli Polynomials
    Lacpao, Noel B.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1747 - 1761
  • [49] Probabilistic poly-Bernoulli numbers
    Liu, Wencong
    Ma, Yuankui
    Kim, Taekyun
    Kim, Dae San
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 840 - 856
  • [50] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH MILNE-THOMSON-BASED POLY-BERNOULLI POLYNOMIALS
    Khan, Waseem ahmad
    Srivastava, Divesh
    Nisar, Kottakkaran sooppy
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)