Gas production from hydrate reservoirs and its modeling

被引:67
|
作者
Pooladi-Darvish, M [1 ]
机构
[1] Univ Calgary, Calgary, AB T2N 1N4, Canada
来源
JOURNAL OF PETROLEUM TECHNOLOGY | 2004年 / 56卷 / 06期
关键词
D O I
10.2118/86827-JPT
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is estimated that the amount of natural gas trapped in hydrates around the world is approximately two orders of magnitude larger than the recoverable gas in conventional reservoirs. This estimate has attracted governments, especially those with limited access to other sources of fossil fuels, as well as several oil and gas producing companies, to take on projects for drilling and testing hydrate reservoirs. Current objectives include devising methods for fast and safe drilling and testing and for improving characterization techniques, and pilot testing of production techniques such as depressurization and thermal stimulation. Activities are underway in relation to at least three onshore and offshore hydrate accumulations around the world. Running in parallel to these activities, progress is underway in microscopic characterization of hydrates to determine important fluid-flow, heat-transfer, thermodynamics, kinetics, and geomechanical properties. Also, research is in progress toward developing numerical simulators for hydrate reservoirs and acquiring experimental information required for accurate modeling of reservoir behavior.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [11] Enhanced Gas Production from Hydrate Reservoirs with Underlying Water Layer
    Xu, Lei
    Shi, Kangji
    Lv, Xin
    Wei, Rupeng
    Fan, Qi
    Li, Qingping
    Dong, Hongsheng
    Zhao, Jiafei
    Yang, Lei
    ENERGY & FUELS, 2021, 35 (02) : 1347 - 1357
  • [12] A numerical method for the gas production process in gas hydrate reservoirs
    Durgut, I
    Parlaktuna, M
    NGH '96 - 2ND INTERNATIONAL CONFERENCE ON NATURAL GAS HYDRATES, PROCEEDINGS, 1996, : 549 - 556
  • [13] On the China's successful gas production test from marine gas hydrate reservoirs
    Wu S.
    Wang J.
    Wu, Shiguo (swu@idsse.ac.cn), 2018, Chinese Academy of Sciences (63): : 2 - 8
  • [14] METHANE PRODUCTION STRATEGIES FOR OCEANIC GAS HYDRATE RESERVOIRS
    Choudhary, Neelam
    Phirani, Jyoti
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 5, 2019,
  • [15] Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization
    Feng, Yongchang
    Chen, Lin
    Suzuki, Anna
    Kogawa, Takuma
    Okajima, Junnosuke
    Komiya, Atsuki
    Maruyama, Shigenao
    ENERGY, 2019, 166 : 1106 - 1119
  • [16] Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method
    Konno, Yoshihiro
    Masuda, Yoshihiro
    Akamine, Koya
    Naiki, Motoyoshi
    Nagao, Jiro
    ENERGY CONVERSION AND MANAGEMENT, 2016, 108 : 439 - 445
  • [17] Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs
    Aghajari, Hamid
    Moghaddam, Moien Habibi
    Zallaghi, Mehdi
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 453 - 469
  • [18] Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs
    Hamid Aghajari
    Moien Habibi Moghaddam
    Mehdi Zallaghi
    Green Energy & Environment, 2019, 4 (04) : 453 - 469
  • [19] Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs
    Tang, Liang-Guang
    Li, Xiao-Sen
    Feng, Zi-Ping
    Li, Gang
    Fan, Shuan-Shi
    ENERGY & FUELS, 2007, 21 (01) : 227 - 233
  • [20] A sand-production control system for gas production from clayey silt hydrate reservoirs
    Li, Yan-long
    Wu, Neng-you
    Ning, Fu-long
    Hu, Gao-wei
    Liu, Chang-ling
    Dong, Chang-yin
    Lu, Jing-an
    CHINA GEOLOGY, 2019, 2 (02) : 121 - 132