Scalable Discrete Matrix Factorization and Semantic Autoencoder for Cross-Media Retrieval

被引:27
|
作者
Zhang, Donglin [1 ,2 ]
Wu, Xiao-Jun [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Autoencoder; cross-modal retrieval; hashing; NEAREST-NEIGHBOR; BINARY-CODES; IMAGE SEARCH; QUANTIZATION;
D O I
10.1109/TCYB.2020.3032017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hashing methods have sparked great attention on multimedia tasks due to their effectiveness and efficiency. However, most existing methods generate binary codes by relaxing the binary constraints, which may cause large quantization error. In addition, most supervised cross-modal approaches preserve the similarity relationship by constructing an n x n large-size similarity matrix, which requires huge computation, making these methods unscalable. To address the above challenges, this article presents a novel algorithm, called scalable discrete matrix factorization and semantic autoencoder method (SDMSA). SDMSA is a two-stage method. In the first stage, the matrix factorization scheme is utilized to learn the latent semantic information, the label matrix is incorporated into the loss function instead of the similarity matrix. Thereafter, the binary codes can be generated by the latent representations. During optimization, we can avoid manipulating a large nxn similarity matrix, and the hash codes can be generated directly. In the second stage, a novel hash function learning scheme based on the autoencoder is proposed. The encoder-decoder paradigm aims to learn projections, the feature vectors are projected to code vectors by encoder, and the code vectors are projected back to the original feature vectors by the decoder. The encoder-decoder scheme ensures the embedding can well preserve both the semantic and feature information. Specifically, two algorithms SDMSA-lin and SDMSA-ker are developed under the SDMSA framework. Owing to the merit of SDMSA, we can get more semantically meaningful binary hash codes. Extensive experiments on several databases show that SDMSA-lin and SDMSA-ker achieve promising performance.
引用
收藏
页码:5947 / 5960
页数:14
相关论文
共 50 条
  • [41] Efficient discrete latent semantic hashing for scalable cross-modal retrieval
    Lu, Xu
    Zhu, Lei
    Cheng, Zhiyong
    Song, Xuemeng
    Zhang, Huaxiang
    SIGNAL PROCESSING, 2019, 154 : 217 - 231
  • [42] Efficient Manifold Ranking for Cross-media retrieval
    Ma, ShaoQin
    Zhang, Hong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 335 - 340
  • [43] Cross-media Relevance Computation for Multimedia Retrieval
    Dong, Jianfeng
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 831 - 835
  • [44] Semantic search on cross-media cultural archives
    Yan, Zhixian
    Scharffe, Francois
    Ding, Ying
    ADVANCES IN INTELLIGENT WEB MASTERING, 2007, 43 : 375 - +
  • [45] Cross-media semantic indexing in the soccer domain
    Buitelaar, Paul
    Declerck, Thierry
    Nemrava, Jan
    Sadlier, David
    2008 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2008, : 280 - 285
  • [46] Multiview Cross-Media Hashing with Semantic Consistency
    Liu, Ruoyu
    Wei, Shikui
    Zhao, Yao
    Zhu, Zhenfeng
    Wang, Jingdong
    IEEE MULTIMEDIA, 2018, 25 (02) : 71 - 86
  • [47] Cross-media retrieval based on CSRN clustering
    Zeng, Cheng
    Wang, Zhenzhen
    Du, Gang
    Journal of Computational Information Systems, 2010, 6 (09): : 2821 - 2830
  • [48] Cross-media retrieval: Concepts, advances and challenges
    Zhuang, Yueting
    Wu, Fei
    Zhang, Hong
    Yang, Yi
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 847 - 850
  • [49] Cross-media retrieval: Concepts, advances and challenges
    Zhuang, Yueting
    Wu, Fei
    Zhang, Hong
    Yang, Yi
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 377 - 380
  • [50] Modality-Dependent Cross-Media Retrieval
    Wei, Yunchao
    Zhao, Yao
    Zhu, Zhenfeng
    Wei, Shikui
    Xiao, Yanhui
    Feng, Jiashi
    Yan, Shuicheng
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 7 (04)