Quality monitoring in multistage manufacturing systems by using machine learning techniques

被引:20
|
作者
Ismail, Mohamed [1 ]
Mostafa, Noha A. [2 ,3 ]
El-assal, Ahmed [1 ]
机构
[1] Benha Univ, Dept Mech Engn, Banha 13518, Qalubia, Egypt
[2] British Univ Egypt, Dept Mech Engn, Cairo 11837, Egypt
[3] Zagazig Univ, Dept Ind Engn, Zagazig 44519, Sharkia, Egypt
关键词
Multistage manufacturing; Quality prediction; Quality monitoring; Industry; 4; 0; Machine learning; Smart manufacturing; VIRTUAL METROLOGY SYSTEM; CLASSIFICATION; OPTIMIZATION; PREDICTION; IMPROVEMENT; SELECTION; INDUSTRY; TRENDS;
D O I
10.1007/s10845-021-01792-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Manufacturing and production processes have become more complicated and usually consist of multiple stages to meet customers' requirements. This poses big challenges for quality monitoring due to the vast amount of data and the interactive effects of many factors on the final product quality. This research introduces a smart real-time quality monitoring and inspection framework capable of predicting and determining the quality deviations for complex and multistage manufacturing systems as early as possible; introduces a hybrid quality inspection approach based on both predictive models and physical inspection in order to enhance the quality monitoring process, save resources, reduce inspection time and costs. Several supervised and unsupervised machine learning techniques such as support vector machine, random forest, artificial neural network, principal component analysis were used to build the quality monitoring model with considering the cumulative effects of different manufacturing stages and the unbalance and dynamic nature of the manufacturing processes. A complex semiconductor manufacturing dataset was used to verify and assess the performance of the proposed framework. The results prove the ability of the suggested framework to enhance the quality monitoring process in multistage manufacturing systems and the ability of the hybrid quality inspection approach to reduce the inspection volume and cost.
引用
收藏
页码:2471 / 2486
页数:16
相关论文
共 50 条
  • [21] Monitoring Solar Panels using Machine Learning Techniques
    Haba, Cristian-Gyozo
    PROCEEDINGS OF 2019 8TH INTERNATIONAL CONFERENCE ON MODERN POWER SYSTEMS (MPS), 2019,
  • [22] Integration of Blockchain, IoT and Machine Learning for Multistage Quality Control and Enhancing Security in Smart Manufacturing
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    SENSORS, 2021, 21 (04) : 1 - 21
  • [23] Monitoring and Diagnosis of Manufacturing Process Using Extreme Learning Machine
    Guo, Jun
    Guo, Shunsheng
    Yu, Xiaobing
    ADVANCED SCIENCE LETTERS, 2011, 4 (6-7) : 2236 - 2239
  • [24] Monitoring and control of biological additive manufacturing using machine learning
    Samuel Gerdes
    Aniruddha Gaikwad
    Srikanthan Ramesh
    Iris V. Rivero
    Ali Tamayol
    Prahalada Rao
    Journal of Intelligent Manufacturing, 2024, 35 : 1055 - 1077
  • [25] Monitoring and control of biological additive manufacturing using machine learning
    Gerdes, Samuel
    Gaikwad, Aniruddha
    Ramesh, Srikanthan
    Rivero, Iris V.
    Tamayol, Ali
    Rao, Prahalada
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (03) : 1055 - 1077
  • [26] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    Aravind, K. S.
    Vashisth, Ananta
    Krishnan, P.
    Kundu, Monika
    Prasad, Shiv
    Meena, M. C.
    Lama, Achal
    Das, Pankaj
    Das, Bappa
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2025, 69 (02) : 499 - 515
  • [27] Quality Assessment of Crops using Machine Learning Techniques
    Chokey, Tenzin
    Jain, Sarika
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 259 - 263
  • [28] Allocation of quality control stations in multistage manufacturing systems
    Shetwan, Ali G.
    Vitanov, Valentin I.
    Tjahjono, Benny
    COMPUTERS & INDUSTRIAL ENGINEERING, 2011, 60 (04) : 473 - 484
  • [29] Evaluation and Application of Machine Learning Techniques for Quality Improvement in Metal Product Manufacturing
    Antosz, Katarzyna
    Knapcikova, Lucia
    Husar, Jozef
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [30] Water Quality Monitoring Using IoT & Machine Learning
    Omambia, Andrew
    Maake, Benard
    Wambua, Anthony
    2022 IST-AFRICA CONFERENCE, 2022,