Electric-induced devil's staircase in perovskite antiferroelectric

被引:3
|
作者
Hu, Tengfei [1 ,2 ,3 ]
Fu, Zhengqian [1 ,2 ]
Li, Zhenqing [1 ,2 ]
Yu, Ziyi [1 ,2 ,3 ]
Zhang, Linlin [1 ]
Yao, Heliang [1 ]
Zeng, Kun [1 ,2 ,3 ]
Wu, Tiantian [1 ,2 ]
Han, Bing [1 ]
Chen, Xuefeng [1 ]
Wang, Genshui [1 ,2 ]
Xu, Fangfang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Shang HaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION; CERAMICS; DENSITY;
D O I
10.1063/5.0094919
中图分类号
O59 [应用物理学];
学科分类号
摘要
Antiferroelectric ceramics can realize ultra-high energy storage, which benefits from transformation between an antiferroelectric phase and a ferroelectric phase. Understanding the mechanism of such phase transition is the key point for building the structure-property correlation. Here, we report the observation of electric-induced devil's staircase in the course of antiferroelectric-ferroelectric phase transition in PbZrO3-based antiferroelectric ceramics by in situ transmission electron microscopy. The dynamic evolution as-revealed in both reciprocal- and real-space involves stepwise rather than monotonic increase in modulation periods along with simultaneous proliferation of nanodomains. Desynchrony of phase transition is observed for incommensurate domains with different initial modulation periods within a single antiferroelectric domain. Then, the synergistic effect of the devil's staircase and as small as possible the initial modulation period is believed to contribute to the superior energy-storage performance. These findings will be helpful for the development of theories for antiferroelectric-ferroelectric phase transition and the design of high-power antiferroelectric materials. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [22] Generalized Devil's staircase and RG flows
    Flack, A.
    Gorsky, A.
    Nechaev, S.
    NUCLEAR PHYSICS B, 2023, 996
  • [23] Multipole polaron in the devil’s staircase of CeSb
    Y. Arai
    Kenta Kuroda
    T. Nomoto
    Z. H. Tin
    S. Sakuragi
    C. Bareille
    S. Akebi
    K. Kurokawa
    Y. Kinoshita
    W.-L. Zhang
    S. Shin
    M. Tokunaga
    H. Kitazawa
    Y. Haga
    H. S. Suzuki
    S. Miyasaka
    S. Tajima
    K. Iwasa
    R. Arita
    Takeshi Kondo
    Nature Materials, 2022, 21 : 410 - 415
  • [24] Multipole polaron roams the devil's staircase
    Zhu, Jian-Xin
    NATURE MATERIALS, 2022, 21 (04) : 384 - 385
  • [25] A multiple devil's staircase in a discontinuous map
    Qu, SX
    Wu, SG
    He, DR
    PHYSICS LETTERS A, 1997, 231 (3-4) : 152 - 158
  • [26] Electric-induced nanodamage in single ZnO nanowires
    Yang, Ya
    Zhang, Yue
    Qi, Junjie
    Liao, Qingliang
    Tang, Lidan
    Wang, Yishu
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [27] Metric universality for the devil's staircase of topological entropy
    Shi, JX
    Cao, KF
    Guo, TL
    Peng, SL
    PHYSICS LETTERS A, 1996, 211 (01) : 25 - 28
  • [28] The Maximal Function of the Devil’s Staircase is Absolutely Continuous
    Cristian González-Riquelme
    Dariusz Kosz
    The Journal of Geometric Analysis, 2024, 34
  • [29] Structured chaos in a devil's staircase of the Josephson junction
    Shukrinov, Yu. M.
    Botha, A. E.
    Medvedeva, S. Yu.
    Kolahchi, M. R.
    Irie, A.
    CHAOS, 2014, 24 (03)
  • [30] Devil's staircase transition of the electronic structures in CeSb
    Kenta Kuroda
    Y. Arai
    N. Rezaei
    S. Kunisada
    S. Sakuragi
    M. Alaei
    Y. Kinoshita
    C. Bareille
    R. Noguchi
    M. Nakayama
    S. Akebi
    M. Sakano
    K. Kawaguchi
    M. Arita
    S. Ideta
    K. Tanaka
    H. Kitazawa
    K. Okazaki
    M. Tokunaga
    Y. Haga
    S. Shin
    H. S. Suzuki
    R. Arita
    Takeshi Kondo
    Nature Communications, 11