Intelligent Analysis of Premature Ventricular Contraction Based on Features and Random Forest

被引:12
|
作者
Xie, Tiantian [1 ,2 ]
Li, Runchuan [1 ,2 ]
Shen, Shengya [3 ]
Zhang, Xingjin [1 ,2 ,4 ]
Zhou, Bing [1 ,2 ]
Wang, Zongmin [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450000, Henan, Peoples R China
[2] Zhengzhou Univ, Cooperat Innovat Ctr Internet Healthcare, Zhengzhou 450000, Henan, Peoples R China
[3] Zhongyuan Univ Technol, Coll Informat & Business, Zhengzhou 450000, Henan, Peoples R China
[4] State Key Lab Math Engn & Adv Comp, Zhengzhou 450000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
FUZZY NEURAL-NETWORK; WAVELET TRANSFORM; CLASSIFICATION; SELECTION;
D O I
10.1155/2019/5787582
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Premature ventricular contraction (PVC) is one of the most common arrhythmias in the clinic. Due to its variability and susceptibility, patients may be at risk at any time. The rapid and accurate classification of PVC is of great significance for the treatment of diseases. Aiming at this problem, this paper proposes a method based on the combination of features and random forest to identify PVC. The RR intervals (pre_RR and post_RR), R amplitude, and QRS area are chosen as the features because they are able to identify PVC better. The experiment was validated on the MIT-BIH arrhythmia database and achieved good results. Compared with other methods, the accuracy of this method has been significantly improved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Premature Ventricular Contraction Variability in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
    Camm, Christian F.
    Tichnell, Crystal
    James, Cynthia A.
    Murray, Brittney
    Porterfield, Florence
    Te Riele, Anneline S. J. M.
    Tandri, Harikrishna
    Calkins, Hugh
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2015, 26 (01) : 53 - 57
  • [42] Detecting Premature Ventricular Contraction in Children with Deep Learning
    Liu Y.
    Huang Y.
    Wang J.
    Liu L.
    Luo J.
    Journal of Shanghai Jiaotong University (Science), 2018, 23 (1) : 66 - 73
  • [43] Postprandial reactive hypoglycemia detected with premature ventricular contraction
    Honda, Hiroyuki
    Tanaka, Shuichi
    Hagiya, Hideharu
    Otsuka, Fumio
    QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2022, 115 (10) : 675 - 676
  • [44] The causality between premature ventricular contraction and heart failure
    Kataoka, Naoya
    Imamura, Teruhiko
    JOURNAL OF ARRHYTHMIA, 2025, 41 (01)
  • [45] A Diagnostic dilemma- Bradycardia with Premature Ventricular Contraction
    Kashyap, Richi
    Khalid, Farhan
    Sun, Helen
    Lyman, Mitchell
    SOUTHERN MEDICAL JOURNAL, 2022, 115 (07) : 504 - 505
  • [46] EFFECTS OF PREMATURE VENTRICULAR CONTRACTION ON DIASTOLIC FUNCTION IN MAN
    STODDARD, MF
    PEARSON, AC
    KERN, MJ
    CLINICAL RESEARCH, 1991, 39 (03): : A763 - A763
  • [47] Premature ventricular contraction ablation for treatment of heart failure
    Shen, Win-Kuang
    HEART RHYTHM, 2021, 18 (09) : 1613 - 1614
  • [48] Ventricular premature contraction associated with mitral valve prolapse
    Yuan, Hong-Tao
    Yang, Mei
    Zhong, Li
    Lee, Ying-Hsiang
    Vaidya, Vaibhav R.
    Asirvatham, Samuel J.
    Ackerman, Michael J.
    Pislaru, Sorin V.
    Suri, Rakesh M.
    Slusser, Joshua P.
    Hodge, David O.
    Wang, Yu-Tang
    Cha, Yong-Mei
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 221 : 1144 - 1149
  • [49] Epidemiological study of premature ventricular contraction in Guangzhou communities
    黄文祥
    刘洋
    刘方舟
    邓海
    薛玉梅
    吴书林
    South China Journal of Cardiology, 2018, 19 (02) : 80 - 88
  • [50] Classification of Premature Ventricular Contraction Using Deep Learning
    De Marco, Fabiola
    Finlay, Dewar
    Bond, Raymond R.
    2020 COMPUTING IN CARDIOLOGY, 2020,