Influence of initial defects on the fatigue behaviour of cement-stabilized macadam base through DEM

被引:10
|
作者
Zhao, Xiaokang [1 ,2 ]
Dong, Qiao [1 ,2 ]
Chen, Xueqin [3 ]
Ni, Fujian [1 ,2 ]
机构
[1] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
[2] Southeast Univ, Natl Demonstrat Ctr Expt Rd & Traff Engn Educ, Nanjing, Peoples R China
[3] Nanjing Univ Sci & Technol, Dept Civil Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Road engineering; fatigue cracking; discrete element method (DEM); cement-stabilized macadam (CSM); initial defect; semicircle bending (SCB) test; AIR VOIDS; ASPHALT; DAMAGE; CONCRETE; LIFE;
D O I
10.1080/10298436.2021.1984473
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fatigue failure of cement-stabilized macadam (CSM) base has always been a concern in highway construction. The microscopic initial defect is an important factor affecting its fatigue performance. The objective of this paper is to investigate the fatigue cracking of CSM materials under cyclic loading through numerical simulation and to analyze the influence of microscopic initial defects. The mesoscale random particle model was established using the discrete element method (DEM). The discrete fracture network (DFN) was used to characterize the microscopic initial defects in cement mortar. A parallel bond evolution method was also developed to simulate the time-dependent fatigue damage under cyclic loading. Then virtual semicircular bending (SCB) fatigue tests were carried out to reproduce the mesoscopic fatigue cracking. The results show that the established mesoscale model can accurately simulate the evolution of microcracks. The fatigue damage presents nonlinear accumulation, and the interface is a weak area of fatigue failure. Through optimizing the cracking propagation path, initial defects induce the penetration crack and reduce the fatigue life. The large-size defects should be more concerned. Fractures with a radius greater than 0.15mm should be controlled within the density range of 20 m/m2, which is beneficial to improve the anti-fatigue performance of CSM.
引用
收藏
页码:4845 / 4856
页数:12
相关论文
共 50 条
  • [31] Experimental Investigation of the Performance of Corn Straw Fiber Cement-Stabilized Macadam
    Wang, Liming
    Zhu, Pandeng
    Song, Zikun
    Wang, Yunlong
    Gong, Chun
    MATERIALS, 2023, 16 (01)
  • [32] Impact of Mixing Methods and Cement Dosage on Unconfined Compressive Strength of Cement-Stabilized Macadam
    Zhao, Kaiyin
    Zhao, Lijun
    Hou, Jinru
    Feng, Zhongxu
    Jiang, Wenzhi
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2022, 16 (01)
  • [33] Mechanical Properties and Prediction Models of Cement-Stabilized Macadam at Different Temperatures
    Gangsheng Ji
    Shibin Ma
    Guang Chen
    Zhaoxia Chen
    Miao He
    Hongliang Zhao
    International Journal of Pavement Research and Technology, 2023, 16 : 385 - 401
  • [34] Polyvinyl alcohol fiber cement-stabilized macadam: A review and performance evaluation
    Wang, Chaohui
    Liu, Jikang
    Chen, Shaochang
    Chen, Feng
    Gao, Zhiwei
    JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING-ENGLISH EDITION, 2024, 11 (03) : 406 - 423
  • [35] Experimental study on the deformation performance of cement-stabilized macadam reinforced with fiber
    Zhang, Chao
    Wu, Wei
    Chen, Rongjun
    ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 : 391 - 395
  • [36] Impact of Mixing Methods and Cement Dosage on Unconfined Compressive Strength of Cement-Stabilized Macadam
    Kaiyin Zhao
    Lijun Zhao
    Jinru Hou
    Zhongxu Feng
    Wenzhi Jiang
    International Journal of Concrete Structures and Materials, 2022, 16
  • [37] Study on Mechanical Properties of Road Cement-Stabilized Macadam Base Material Prepared with Construction Waste Recycled Aggregate
    Yuan, Yingjie
    Hu, Xianhu
    Wang, Kai
    Liu, Zhi
    Zhong, Mingchen
    Meng, Kun
    BUILDINGS, 2024, 14 (09)
  • [38] TENSILE FRACTURE AND FATIGUE OF CEMENT-STABILIZED SOIL
    CROCKFORD, WW
    LITTLE, DN
    JOURNAL OF TRANSPORTATION ENGINEERING-ASCE, 1987, 113 (05): : 520 - 537
  • [39] Effect of aggregate size and volume content on crack resistance of cement-stabilized macadam
    Zhao X.
    Dong Q.
    Gu X.
    Ni F.
    Wang Y.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (01): : 138 - 144
  • [40] Frost Resistance and Mechanical Characteristics of Cement-Stabilized Macadam Mixed with Rubber Powder
    Jie, Shaolong
    Mao, Shuai
    Yue, Zurun
    Sun, Zhiqi
    Sun, Tiecheng
    Hu, Tianfei
    Xie, Peng
    Yang, Zhihao
    Yuan, Lanlan
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (07)