Predicting Blood Donors Using Machine Learning Techniques

被引:8
|
作者
Kauten, Christian [1 ]
Gupta, Ashish [2 ]
Qin, Xiao [1 ]
Richey, Glenn [3 ]
机构
[1] Auburn Univ, Samuel Ginn Coll Engn, Comp Sci & Software Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Harbert Coll Business, Dept Syst & Technol, Auburn, AL 36849 USA
[3] Auburn Univ, Harbert Coll Business, Dept Supply Chain Management, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Analytics; Blood donors; Blood supply; Machine learning; Retention; RETENTION; CELLS;
D O I
10.1007/s10796-021-10149-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The United States' blood supply chain is experiencing market decline due to recent innovations in surgical practice, transfusion management, and hospital policy. These innovations strain US blood centers, resulting in cuts to surge capacities, consolidation, and reduced funding for research and outreach programs. In this study, we use data from a regional blood center to explore the application of contemporary machine learning algorithms for modeling donor retention. Such predictive models of donor retention can be used to design more cost effective donor outreach programs. Using data from a large US blood center paired with random forest classifiers, we are able to build a model of donor retention with a Mathews correlation of coefficient of 0.851.
引用
收藏
页码:1547 / 1562
页数:16
相关论文
共 50 条
  • [21] Modeling and predicting US recessions using machine learning techniques
    Vrontos, Spyridon D.
    Galakis, John
    Vrontos, Ioannis D.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 647 - 671
  • [22] Predicting ESG Controversies in Banks Using Machine Learning Techniques
    Dipierro, Anna Rita
    Barrionuevo, Fernando Jimenez
    Toma, Pierluigi
    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, 2025,
  • [23] Predicting Success of Bollywood Movies Using Machine Learning Techniques
    Jaiswal, Sameer Ranjan
    Sharma, Divyansh
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 121 - 124
  • [24] Predicting Recidivism to Drug Distribution using Machine Learning Techniques
    Butsara, Nuttawit
    Athonthitichot, Panchan
    Jodpimai, Pichai
    2019 17TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2019, : 165 - 169
  • [25] Predicting Market Performance Using Machine and Deep Learning Techniques
    El Mahjouby, Mohamed
    Bennani, Mohamed Taj
    Lamrini, Mohamed
    Bossoufi, Badre
    Alghamdi, Thamer A. H.
    El Far, Mohamed
    IEEE ACCESS, 2024, 12 : 82033 - 82040
  • [26] Predicting malaria outbreak in The Gambia using machine learning techniques
    Khan, Ousman
    Ajadi, Jimoh Olawale
    Hossain, M. Pear
    PLOS ONE, 2024, 19 (05):
  • [27] Predicting Postgraduate Students' Performance Using Machine Learning Techniques
    Koutina, Maria
    Kermanidis, Katia Lida
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT II, 2011, 364 : 159 - 168
  • [28] Predicting Breast Screening Attendance Using Machine Learning Techniques
    Baskaran, Vikraman
    Guergachi, Aziz
    Bali, Rajeev K.
    Naguib, Raouf N. G.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (02): : 251 - 259
  • [29] Predicting sustainable arsenic mitigation using machine learning techniques
    Singh, Sushant K.
    Taylor, Robert W.
    Pradhan, Biswajeet
    Shirzadi, Ataollah
    Binh Thai Pham
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 232
  • [30] Predicting Software Effort Estimation Using Machine Learning Techniques
    BaniMustafa, Ahmed
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (CSIT), 2018, : 249 - 256