Automated Feature Extraction on AsMap for Emotion Classification Using EEG

被引:43
|
作者
Ahmed, Md Zaved Iqubal [1 ]
Sinha, Nidul [2 ]
Phadikar, Souvik [2 ]
Ghaderpour, Ebrahim [3 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Silchar 788010, India
[2] Natl Inst Technol, Dept Elect Engn, Silchar 788010, India
[3] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada
关键词
arousal; classification; electroencephalogram; emotion; deep learning; valence; DIFFERENTIAL ENTROPY FEATURE; RECOGNITION; REMOVAL;
D O I
10.3390/s22062346
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction methods has been proposed. The asymmetry in different brain regions is captured in a 2D vector, termed the AsMap, from the differential entropy features of EEG signals. These AsMaps are then used to extract features automatically using a convolutional neural network model. The proposed feature extraction method has been compared with differential entropy and other feature extraction methods such as relative asymmetry, differential asymmetry and differential caudality. Experiments are conducted using the SJTU emotion EEG dataset and the DEAP dataset on different classification problems based on the number of classes. Results obtained indicate that the proposed method of feature extraction results in higher classification accuracy, outperforming the other feature extraction methods. The highest classification accuracy of 97.10% is achieved on a three-class classification problem using the SJTU emotion EEG dataset. Further, this work has also assessed the impact of window size on classification accuracy.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Fourier-Based Feature Extraction for Classification of EEG Signals Using EEG Rhythms
    Pushpendra Singh
    S. D. Joshi
    R. K. Patney
    Kaushik Saha
    Circuits, Systems, and Signal Processing, 2016, 35 : 3700 - 3715
  • [22] Audio feature extraction for effective emotion classification
    Han E.
    Cha H.
    IEIE Transactions on Smart Processing and Computing, 2019, 8 (02): : 100 - 107
  • [23] Feature extraction using Pythagorean means for classification of epileptic EEG signals
    Shanir, P. P. Muhammed
    Iqbal, Sadaf
    Khan, Yusuf U.
    Farooq, Omar
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2018, 28 (03) : 243 - 260
  • [24] EEG signal classification using wavelet feature extraction and neural networks
    Jahankhani, Pari
    Kodogiannis, Vassilis
    Revett, Kenneth
    IEEE JOHN VINCENT ATANASOFF 2006 INTERNATIONAL SYMPOSIUM ON MODERN COMPUTING, PROCEEDINGS, 2006, : 120 - +
  • [25] EEG Feature Extraction Using Genetic Programming for the Classification of Mental States
    Z-Flores, Emigdio
    Trujillo, Leonardo
    Legrand, Pierrick
    Faita-Ainseba, Frederique
    ALGORITHMS, 2020, 13 (09)
  • [26] Adaptive feature extraction for EEG signal classification
    Shiliang Sun
    Changshui Zhang
    Medical and Biological Engineering and Computing, 2006, 44 : 931 - 935
  • [27] Fuzzy Feature Extraction for Multichannel EEG Classification
    Zhou, Pei-Yuan
    Chan, Keith C. C.
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 10 (02) : 267 - 279
  • [28] EEG feature extraction for classification of sleep stages
    Estrada, E
    Nazeran, H
    Nava, P
    Behbehani, K
    Burk, J
    Lucas, E
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 196 - 199
  • [29] Adaptive feature extraction for EEG signal classification
    Sun, Shiliang
    Zhang, Changshui
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (10) : 931 - 935
  • [30] Emotion Classification Using EEG Signals
    Dabas, Harsh
    Sethi, Chaitanya
    Dua, Chirag
    Dalawat, Mohit
    Sethia, Divyashikha
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 380 - 384