The strong law of large numbers for sums of randomly chosen random variables

被引:1
|
作者
Gdula, Agnieszka M. [1 ]
Krajka, Andrzej [1 ]
机构
[1] Marie Curie Sklodowska Univ, Ul Akad 9, PL-20033 Lublin, Poland
关键词
strong law of large numbers; randomly indexed sums; random sets;
D O I
10.1007/s10986-021-09528-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {X(n,)n >= 1} be a sequence of independent or identically distributed dependent random variables, and let {A(n,)n >= 1} be a sequence of random subsets of natural numbers independent of {X-n, n >= 1}. In this paper, we describe the strong law of large numbers (SLLN) of the form Sigma(i is an element of An)(X-i - E Sigma(i is an element of An) X-i)/b(n) -> 0 a.s. as n -> infinity for some sequence of nondecreasing positive numbers {b(n), n >= 1}. There often arises an assumption that {A(n), n >= 1} are almost surely increasing: A(n) subset of A(n + 1), a. s n >= 1.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 50 条
  • [31] Strong Law of Large Numbers for Weighted Sums of Random Variables and Its Applications in EV Regression Models
    Yunjie Peng
    Xiaoqian Zheng
    Wei Yu
    Kaixin He
    Xuejun Wang
    Journal of Systems Science and Complexity, 2022, 35 : 342 - 360
  • [32] A strong law of large numbers for nonnegative random variables and applications
    Chen, Pingyan
    Sung, Soo Hak
    STATISTICS & PROBABILITY LETTERS, 2016, 118 : 80 - 86
  • [33] Generalization of strong law of large numbers for nonnegative random variables
    Ghazani, Z. Shokooh
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (05): : 128 - 132
  • [34] The strong law of large numbers for pairwise NQD random variables
    Qunying Wu
    Yuanying Jiang
    Journal of Systems Science and Complexity, 2011, 24 : 347 - 357
  • [35] Strong Law of Large Numbers for Negatively Associated Random Variables
    Wang, Yourong
    Tan, Yili
    Liu, Yanli
    INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 18 - +
  • [36] On the Strong Law of Large Numbers for a Sequence of Dependent Random Variables
    Petrov V.V.
    Journal of Mathematical Sciences, 2014, 199 (2) : 225 - 227
  • [37] On the strong law of large numbers for φ-mixing and ρ-mixing random variables
    Anna Kuczmaszewska
    Acta Mathematica Hungarica, 2011, 132 : 174 - 189
  • [38] The Kolmogorov strong law of large numbers for WOD random variables
    Yingqiang Huang
    Pingyan Chen
    Soo Hak Sung
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [39] STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH MULTIDIMENSIONAL INDICES
    Gdula, Agnieszka M.
    Krajka, Andrzej
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (01): : 185 - 199
  • [40] ON STRONG LAW OF LARGE NUMBERS FOR PAIRWISE INDEPENDENT RANDOM VARIABLES∗
    Akhmiarova, A. T.
    Veretennikov, A. yu.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2024, 69 (03) : 337 - 345